Skip to main content

General Platform for In Vivo Sensors for Oxygen, Glucose and Lactate Monitoring

  • Conference paper
  • First Online:
Portable Chemical Sensors

Abstract

Essential properties of biosensors for continuous monitoring in blood and tissue are selectivity, sensitivity and biocompatibility. A variety of membranes have been explored to achieve these properties. A good understanding of the diffusion properties of analytes and interferent species through these membranes is important for improvement of design and the understanding of response change in complex biological matrix. A simple analytical expression for the accurate determination of diffusion coefficient of analytes through biofilms and cylindrical granules is described and its application for biosensing presented. A general, needle-based, amperometric platform for the continuous monitoring of oxygen, glucose and lactate is also described, most notably a recess tip format, and some considerations on biosensor design and application are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark LC Jr, Wolf R, Granger D, Taylor Z (1953) Continuous recording of blood oxygen tensions by polarography J Appl Physiol 6:189–193

    CAS  Google Scholar 

  2. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  3. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements Biosens Bioelectron 20:2388–2403

    Article  CAS  Google Scholar 

  4. Newman JD, Tigwell LJ, Warner PJ, Turner APF (2001) Biosensors: boldly going into the new millennium Sens Rev 21:268–271

    Article  Google Scholar 

  5. Shichiri M, Kawamori R, Yamasaki Y, Hakui N, Abe H (1982) Wearable artificial endocrine pancreas with needle-type glucose sensor Lancet 2:1129–1131

    Article  CAS  Google Scholar 

  6. Guiseppi-Elie A, Brahim S, Slaughter G, Ward KR (2005) Design of a subcutaneous implantable biochip for monitoring of glucose and lactate IEEE Sens J 5:345–355

    Article  CAS  Google Scholar 

  7. Poscia A, Messeri D, Moscone D, Ricci F, Valgimigli F (2005) A novel continuous subcutaneous lactate monitoring system Biosens Bioelectron 20:2244–2250

    Article  CAS  Google Scholar 

  8. Wilson GS, Hu YB (2000) Enzyme based biosensors for in vivo measurements Chem Rev 100:2693–2704

    Article  CAS  Google Scholar 

  9. Wang J, Chatrathi MP, Collins GE (2007) Simultaneous microchip enzymatic measurements of blood lactate and glucose Anal Chim Acta 585:11–16

    Article  CAS  Google Scholar 

  10. Dai Y-Q, Zhou D-M, Shiu K-K (2006) Permeability and permselectivity of polyphenylenediamine films synthesized at a palladium disk electrode Electrochim Acta 52:297–303

    Article  CAS  Google Scholar 

  11. Reddy SM, Vadgama PM (1997) Membranes to improve amperometric sensor characteristics. In Handbook of biosensors and electronic noses: Medicine, food, and the environment Kress-Rogers, E (Ed) 111-135 CRC Press, Inc.

    Google Scholar 

  12. Eddy S, Warriner K, Christie I, Ashworth D, Purkiss C, Vadgama P (1995) The modification of enzyme electrode properties with nonconducting electropolymerized films Biosens Bioelectron 10:831–839

    Article  CAS  Google Scholar 

  13. Wang J (2008) In vivo glucose monitoring: Towards ‘Sense and Act’ feedback-loop individualized medical systems Talanta 75:636–641

    Article  CAS  Google Scholar 

  14. Pauliukaite R, Schoenleber M, Vadgama P, Brett CMA (2008) Development of electrochemical biosensors based on sol-gel enzyme encapsulation and protective polymer membranes Anal Bioanal Chem 390:1121–1131

    Article  CAS  Google Scholar 

  15. Rong Z, Rashid S, Vadgama P (2006) A bipartite expression for the transient amperometric current at a membrane covered planar electrode to characterize solute diffusion through the membrane Electroanalysis 18:1703–1709

    Article  CAS  Google Scholar 

  16. Rong Z, Vadgama P (2006) Bipartite expressions for diffusional mass transport in biomembranes Biophys J 91:4690–4696

    Article  CAS  Google Scholar 

  17. Rong ZM, Cheema U, Vadgama P (2006) Needle enzyme electrode based glucose diffusive transport measurement in a collagen gel and validation of a simulation model Analyst 131:816–821

    Article  CAS  Google Scholar 

  18. Rong Z, Vadgama P (2009) An electrochemical method for measurement of mass transport in polymer membranes using acetaminophen as a model system Electrochim Acta 54:4949–4953

    Article  CAS  Google Scholar 

  19. Kacanovska A, Rong Z, Schmidt M, Russell PS, Vadgama P (2010) Bio-sensing using recessed gold-filled capillary amperometric electrodes Anal Bioanal Chem 398:1687–1694

    Article  CAS  Google Scholar 

  20. Rong Z, Terzyk AP, Gauden PA, Vadgama P (2007) Effective diffusion coefficient determination within cylindrical granules of adsorbents using a direct simulation method J Colloid Interface Sci 313:449–453

    Article  CAS  Google Scholar 

  21. Chang H, Khan R, Rong ZM, Sapelkin A, Vadgama P (2010) Study of albumin and fibrinogen membranes formed by interfacial crosslinking using microfluidic flow Biofabrication 2. doi:10.1088/1758-5082/2/3/035002

  22. Vadgama P (2007) Sensor biocompatibility: final frontier in bioanalytical measurement Analyst 132:495–499

    Article  CAS  Google Scholar 

  23. Schneiderman G, Goldstick TK (1978) Oxygen-electrode design criteria and performance-characteristics – recessed cathode J Appl Physiol 45:145–154

    CAS  Google Scholar 

  24. Wang W, Vadgama P (2004) O2 microsensors for minimally invasive tissue monitoring J R Soc Interface 1:109–117

    Article  CAS  Google Scholar 

  25. Wang J (2006) Analytical electrochemisty. Wiley, New York

    Book  Google Scholar 

  26. Vaddiraju S, Burgess DJ, Jain FC, Papadimitrakopoulos F (2009) The role of H2O2 outer diffusion on the performance of implantable glucose sensors Biosens Bioelectron 24:1557–1562

    Article  CAS  Google Scholar 

  27. Wilson GS, Ammam M (2007) In vivo biosensors FEBS J 274:5452–5461

    Article  CAS  Google Scholar 

  28. Rong ZM, Leitao E, Popplewell J, Alp B, Vadgama P (2008) Needle enzyme electrode for lactate measurement in vivo IEEE Sens J 8:113–120

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank EPSRC for generous funding through Project EP/H009744/1 (ESPRIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Vadgama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Spehar-Délèze, AM., Anastasova, S., Rong, Z., Bickham, D., Chang, H., Vadgama, P. (2012). General Platform for In Vivo Sensors for Oxygen, Glucose and Lactate Monitoring. In: Nikolelis, D. (eds) Portable Chemical Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2872-1_16

Download citation

Publish with us

Policies and ethics