Skip to main content

ATP Measurement in Bio-Contamination

  • Conference paper
  • First Online:
Portable Chemical Sensors

Abstract

One method to evaluate cell viability is by measuring mitochondrial activity and ATP cell content. Thus, ATP can either provide information on the presence of microbial contamination or be an indicator of cytotoxicity, since it declines very rapidly when cells undergo necrosis or apoptosis. Methods to measure the presence of ATP have been explored, based on different measurement techniques but ATP bioluminescence is presently the most sensitive rapid method for detection of bacterial contamination. Some efforts to improve the assay have adopted protein-engineering techniques to achieve better pH stability and longer wavelength emission. Fortuitously these mutants also show good spectral overlap with the fluorescence proteins that emit in the red region of the spectrum so that a BRET construct can be designed that shifts the emission further to longer wavelengths. With such a format, a ratiometric measurement based on the luciferase/luciferin: fluorescent protein emission can be correlated with ATP concentration. Typically a range of 10−7 to 10−10 M ATP can be measured under optimized conditions. Better sensitivity can be demonstrated by amplifying the ATP in an enzyme-recycling pathway, by using, for example, adenylate kinase and polyphosphate kinase. This can result in 10,000-fold amplification of ATP. To put this into context, the average cultivable microbial population in the samples from ordinary rooms is in the range 70–560 CFU ml−1 or 40–3,400 × 10−15 mol ml−1 ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahato P, Ghosh A, Mishra SK, Shrivastav A, Mishra S, Das A (2011) Zn(II)-Cyclam based chromogenic sensors for recognition of ATP in aqueous solution under physiological conditions and their application as viable staining agents for microorganism. Inorg Chem 50:4162–4170

    Article  CAS  Google Scholar 

  2. Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273

    Article  CAS  Google Scholar 

  3. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007

    Article  CAS  Google Scholar 

  4. Slater K (2001) Cytotoxicity tests for high-throughput drug discovery. Curr Opin Biotechnol. 12:70–74

    Article  CAS  Google Scholar 

  5. Crouch S, Kozlowski R, Slater K, Fletcher J (1993) The Use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Meth 160:81–88

    Article  CAS  Google Scholar 

  6. Kangas L, Grönroos M, Nieminen A (1984) Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med Biol 62:338–343

    CAS  Google Scholar 

  7. Miret S, De Groene EM, Klaffke W (2006) Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. J Biomol Screen 11:184–193

    Article  CAS  Google Scholar 

  8. Costa PD, Andrade NJ, Passos FJV, Brandão SCC, Rodrigues CGF (2004) ATP-bioluminescence as a technique to evaluate the microbiological quality of water in food industry. Braz Arch Biol Technol 47:399–405

    Article  CAS  Google Scholar 

  9. Ceresa L, Ball P (2006) Using ATP bioluminescence for microbiological measurements in pharmaceutical manufacturing. In: Miller MJ (ed) Encyclopedia of rapid microbiological methods, vol 2. PDA, Baltimore, pp 233–250

    Google Scholar 

  10. Vilar M, Rodriguez-Otero J, Dieguez F, Sanjuan M, Yus E (2008) Application of ATP bioluminescence for evaluation of surface cleanliness of milking equipment. Int J Food Microbiol 125:357–361

    Article  CAS  Google Scholar 

  11. http://www.bt.cdc.gov/bioterrorism/overview.asp

  12. Bianchi A, Domenech A, Garcia-Espana E, Luis SV (1993) Electrochemical studies on anion coordination chemistry – application of the molar-ratio method to competitive cyclic voltammetry. Anal Chem 65:3137–3142

    Article  CAS  Google Scholar 

  13. Singhal P, Kuhr W (1997) Direct electrochemical detection of purine- and pyrimidine based nucleotides with sinusoidal voltammetry. Anal Chem 69:3552–3557

    Article  CAS  Google Scholar 

  14. Li W, Nie Z, Xu X, Shen Q, Deng C, Chen J, Yao S (2009) A sensitive, label free electrochemical aptasensor for ATP detection. Talanta 78:954–958

    Article  Google Scholar 

  15. Compagnone D, Guilbault GG (1997) Glucose oxidase/hexokinase electrode for the determination of ATP. Anal Chim Acta 340:109–113

    Article  CAS  Google Scholar 

  16. Zeng Z, Torriero AAJ, Bond AM, Spiccia L (2010) Fluorescent and Electrochemical Sensing of Polyphosphate nucleotides by ferrocene functionalised with Two ZnII (TACN)(pyrene) complexes. Chem-Eur J 16:9154–9163

    Article  CAS  Google Scholar 

  17. Kueng A, Kranz C, Mizaikoff B (2004) Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron 19:1301–1307

    Article  CAS  Google Scholar 

  18. Singhal P, Kuhr WG (1997) Ultrasensitive voltammetric detection of underivatized ­oligonucleotides and DNA. Anal Chem 69:4828–4832

    Article  CAS  Google Scholar 

  19. Schubert F, Kirstein D, Scheller F, Abraham M, Boross L (1986) Enzyme electrode for ­fructose, glucose-6-phosphate and ATP determination. Anal Lett 19:2155–2167

    Article  CAS  Google Scholar 

  20. Yang X, Johansson G, Pfeiffer D, Scheller F (1991)Enzyme electrodes for ADP/ATP with enhanced sensitivity due to chemical amplification and intermediate accumulation. Electroanalysis 3:659–663

    Article  CAS  Google Scholar 

  21. Buryak A, Zaubitzer F, Pozdnoukhov A, Severin K (2008) Indicator displacement assays as molecular timers. J Am Chem Soc 130:11260–11261

    Article  CAS  Google Scholar 

  22. Sancenón F, Descalzo AB, Martínez-Máñez R, Miranda MA, Soto J (2001) A Colorimetric ATP Sensor Based on 1,3,5-Triarylpent-2-en-1,5-diones. Angew Chem Int Ed 40:2640–2643

    Article  Google Scholar 

  23. Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    Article  CAS  Google Scholar 

  24. Chen SJ, Huang YF, Huang CC, Lee KH, Lin ZH, Chang HT (2008) Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 23:1749–1753

    Article  CAS  Google Scholar 

  25. Karon BS, Nissen ER, VOSS J, Thomas DD (1995) A continuous spectrophotometric assay for simultaneous measurement of calcium-uptake and ATP hydrolysis in sarcoplasmic-reticulum. Anal Biochem 227:328–333

    Article  CAS  Google Scholar 

  26. Barnett R (1970) Effect of monovalent cations on the ouabain inhibition of the sodium and potassium ion activated adenosine triphosphatase. Biochemistry 9:4644–4648

    Article  CAS  Google Scholar 

  27. Kiianitsa K, Solinger JA, Heyer WD (2003) NADH-coupled microplate photometric assay for kinetic studies of ATP-hydrolyzing enzymes with low and high specific activities. Anal Biochem 321:266–271

    Article  CAS  Google Scholar 

  28. Fujitaki JM, Dee Nord L, Willis RC, Robins RK (1992) A novel non-radioactive method for detection of nucleoside analog phosphorylation by 5’-nucleotidase. J Biochem Biophys Methods 25:1–10

    Article  CAS  Google Scholar 

  29. Strehler BL (2006) Bioluminescence assay: principles and practice. Methods of biochemical analysis. Wiley, Hoboken, p 99

    Google Scholar 

  30. Branchini BR, Ablamsky DM, Davis AL, Southworth TL, Butler B, Fan F, Jathoul AP, Pule MA (2010) Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal Biochem 396:290–297

    Article  CAS  Google Scholar 

  31. Rice B, Cable M, Nelson M (2001) In vivo imaging of light-emitting probes. J Biomed Opt 6:432–440

    Article  CAS  Google Scholar 

  32. Viviani VR, Arnoldi FGC, Venkatesh B, Neto AJS, Ogawa FGT, Oehlmeyer ATL, Ohmiya Y (2006) Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases. J Biochem 140:467–474

    Article  CAS  Google Scholar 

  33. Viviani V, Silva A, Perez G, Santelli R, Bechara E, Reinach F (1999) Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle Pyrearinus termitilluminans luciferase. Photochem Photobiol 70:254–260

    Article  CAS  Google Scholar 

  34. Rowe L, Dikici E, Daunert S (2009) Engineering bioluminescent proteins: expanding their analytical potential. Anal Chem 81:8662–8668

    Article  CAS  Google Scholar 

  35. Rao J, Dragulescu-Andrasi A, Yao H, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18:17–25

    Article  CAS  Google Scholar 

  36. Branchini B, Southworth T, Khattak N, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148

    Article  CAS  Google Scholar 

  37. Law GHE, Gandelman OA, Tisi LC, Lowe CR, Murray JAH (2006) Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-­tolerance. Biochem J 397:305–312

    Article  CAS  Google Scholar 

  38. White P, Squirrell D, Arnaud P, Lowe C, Murray J (1996) Improved thermostability of the North American firefly luciferase: Saturation mutagenesis at position 354. Biochem J 319:343–350

    CAS  Google Scholar 

  39. Tisi L, White P, Squirrell D, Murphy M, Lowe C, Murray J (2002) Development of a ­thermostable firefly luciferase. Anal Chim Acta 457:115–123

    Article  CAS  Google Scholar 

  40. Kitayama A, Yoshizaki H, Ohmiya Y, Ueda H, Nagamune T (2003) Creation of a thermostable firefly luciferase with pH-insensitive luminescent color. Photochem Photobiol 77:333–338

    Article  CAS  Google Scholar 

  41. Kajiyama N, Nakano E (1993) Thermostabilization of firefly luciferase by a single amino-acid substitution at position-217. Biochemistry 32:13795–13799

    Article  CAS  Google Scholar 

  42. Fahmi NE, Dedkova L, Wang B, Golovine S, Hecht SM (2007) Site-specific incorporation of glycosylated serine and tyrosine derivatives into proteins. J Am Chem Soc 129:3586–3597

    Article  CAS  Google Scholar 

  43. Viviani VR, Arnoldi FGC, Neto AJS, Oehlmeyer TL, Bechara EJH, Ohmiya Y (2008) The structural origin and biological function of pH-sensitivity in firefly luciferases. Photochem Photobiol Sci 7:159–169

    Article  CAS  Google Scholar 

  44. Branchini BR, Ablamsky DM, Murtiashaw MH, Uzasci L, Fraga H, Southworth TL (2007) Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 361:253–262

    Article  CAS  Google Scholar 

  45. Shapiro E, Lu C, Baneyx F (2005) A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. Protein Eng Des Sel 18:581–587

    Article  CAS  Google Scholar 

  46. De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23:2702–2709

    Article  CAS  Google Scholar 

  47. Arai R, Nakagawa H, Kitayama A, Ueda H, Nagamune T (2002) Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J Biosci Bioeng 94:362–364

    CAS  Google Scholar 

  48. Hoshino H, Nakajima Y, Ohmiya Y (2007) Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat Methods 4:637–639

    Article  CAS  Google Scholar 

  49. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Bioluminescence in analytical chemistry and in vivo imaging. Trac-Trend Anal Chem 28:307–322

    Article  CAS  Google Scholar 

  50. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci 96:151–156

    Article  CAS  Google Scholar 

  51. Iglesias P, Costoya JA (2009) A novel BRET-based genetically encoded biosensor for functional imaging of hypoxia. Biosens Bioelectron 24:3126–3130

    Article  CAS  Google Scholar 

  52. Branchini B, Rosenberg J, Ablamsky D, Taylor K, Southworth T, Linder S (2011) Sequential BRET-FRET based ratiometric protease assays with fusion proteins of firefly luciferase and RFP. Anal Biochem 414:239–245

    Article  CAS  Google Scholar 

  53. So M, Xu C, Loening A, Gambhir S, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    Article  CAS  Google Scholar 

  54. Branchini BR, Ablamsky DM, Rosenberg JC (2010) Chemically modified firefly luciferase is an efficient source of near-infrared light. Bioconjugate Chem 21:2023–2030

    Article  CAS  Google Scholar 

  55. Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, Gorodnicheva TV, Strukova L, Shidlovskiy KM, Britanova OV, Zaraisky AG, Lukyanov KA, Loschenov VB, Luker GD, Chudakov DM (2010) Near-infrared fluorescent proteins. Nat Methods 7:827–829

    Article  CAS  Google Scholar 

  56. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  57. Delahaye E, Welté B, Levi Y, Leblon G, Montiel A (2003) An ATP-based method for monitoring the microbiological drinking water quality in a distribution network. Water Res 37:3689–3696

    Article  CAS  Google Scholar 

  58. Griffiths M (1993) Applications of bioluminescence in the dairy industry. J Dairy Sci 76:3118–3125

    Article  CAS  Google Scholar 

  59. Samkutty P, Gough R, Adkinson R, McGrew P (2001) Rapid assessment of the bacteriological quality of raw milk using ATP bioluminescence. J Protect 64:208–212

    CAS  Google Scholar 

  60. Davidson C, Griffith C, Peters A, Fielding L (1999) Evaluation of two methods for monitoring surface cleanliness – ATP bioluminescence and traditional hygiene swabbing. Luminescence 14:33–38

    Article  CAS  Google Scholar 

  61. Mulvey D, Redding P, Robertson C, Woodall C, Kingsmore P, Bedwell D, Dancer S (2010) Finding a benchmark for monitoring hospital cleanliness. J Hosp Infect 77:25–30

    Article  Google Scholar 

  62. Venkateswaran K, Hattori N, La Duc MT, Kern R (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 52:367–377

    Article  CAS  Google Scholar 

  63. Sakakibara T, Murakami S, Imai K (2003) Enumeration of bacterial cell numbers by amplified firefly bioluminescence without cultivation. Anal Biochem 312:48–56

    Article  CAS  Google Scholar 

  64. Satoh T, Kato J, Takiguchi N, Ohtake H, Kuroda A (2004) ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell. Biosci Biotechnol Biochem 68:1216–1220

    Article  CAS  Google Scholar 

  65. Cheng Y, Liu Y, Huang J, Li K, Zhang W, Xian Y, Jin L (2009) Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta 77:1332–1336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. H. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Borghei, G., Hall, E.A.H. (2012). ATP Measurement in Bio-Contamination. In: Nikolelis, D. (eds) Portable Chemical Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2872-1_11

Download citation

Publish with us

Policies and ethics