Skip to main content

Portable Biosensors for the Rapid Detection of Biochemical Weapons of Terrorism

  • Conference paper
  • First Online:
Portable Chemical Sensors

Abstract

The present review article describes the weapons of bioterrorism, history, types of agents used and recent advances of chemical sensors for the rapid detection of chemical and biological agents and other weapons of terrorism. The release of viruses, bacteria, or other germs used to cause illness or death in people mainly, animals, or plants can be found in nature and mainly are prepared to cause diseases or death. These biological weapons are used by terrorists as a method of creating mass panic and disruption to a society. Therefore it is of primary concern to develop biosensors to detect these terrorism weapons prior to their use. Novel recent biosensor technology has significant technological advantages when compared to that of the traditional detection methods. However, biosensor technology still needs to construct a portable device for the rapid detection of bioterrorism weapons that can be used in airports and other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bioterrorism Overview, Centers for Disease Control and Prevention, 2008-02-12 http://www.bt.cdc.gov/bioterrorism/overview.asp. Retrieved 22 May 2009

  2. Of Biologics as Weapons Bioterrorism: A Threat to National Security or Public Health Defining Issue. MM&I 554 University of Wisconsin–Madison and Wisconsin State Laboratory of Hygiene, September 30, 2008

    Google Scholar 

  3. Joy B (2007) Why the future doesn’t need us: how 21st century technologies threaten to make humans an endangered species, Random House, ISBN 978–0553528350

    Google Scholar 

  4. Past U.S. Incidents of Food Bioterrorism Bioterrorism: A Threat to National Security or Public Health Defining Issue, University of Wisconsin–Madison and the Wisconsin State Laboratory of Hygiene, MM&I 554, September 30, 2008

    Google Scholar 

  5. Takashashi H (2004) CDC-Bacillus anthracis Incident, Kameido, Tokyo, 1993. Emerg Infect Dis 10(1):117–120

    Google Scholar 

  6. Gregory B, Waag D (1997) (PDF), Military medicine: medical aspects of biological warfare, office of the surgeon general, Department of the Army, Library of Congress 97–22242, http://www.bordeninstitute.army.mil/published_volumes/biological_warfare/BW-ch06.pdf. Retrieved 22 May 2009

  7. Tucker JB, Mahan ER (2009) President Nixon’s decision to renounce the U.S. Offensive biological weapons program. National Defense University Press, Washington, DC. Available at http://www.ndu.edu/WMDCenter/docUploaded/cswmd-cs1.pdf

  8. Woolley JT, Peters G (1940) The American Presidency Project [online]. Santa Barbara, CA. Available from World Wide Web at http://www.presidency.ucsb.edu/ws/?pid=3523

  9. Vietri NJ et al (2009) A short course of antibiotic treatment is effective in preventing death from experimental inhalational anthrax after discontinuing antibiotics. J Infect Dis 199(3):336–341

    Article  CAS  Google Scholar 

  10. Military Vaccination Program website

    Google Scholar 

  11. Center for Disease Control and Prevention (CDC) Botulism Factsheet

    Google Scholar 

  12. Center for Disease Control and Prevention (CDC) Plague

    Google Scholar 

  13. Center for Disease Control and Prevention (CDC) Plague Home Page

    Google Scholar 

  14. Center for Disease Control and Prevention (CDC) VuralHemirrhagic Fevers

    Google Scholar 

  15. Center for Disease Control and Prevention (CDC) Tularemia

    Google Scholar 

  16. Center for Disease Control and Prevention (CDC) Brucellosis

    Google Scholar 

  17. Center for Disease Control and Prevention (CDC) Q Fever

    Google Scholar 

  18. Hendrickson OD, Fedyunina NS, Martianov AA, Zherdev AV, Dzantiev BB (2011) J Nanopart Res 13:3713–3719

    Article  CAS  Google Scholar 

  19. Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G, Wang J (2011) Nano Lett 11:2083

    Article  CAS  Google Scholar 

  20. Campuzano S, Kagan D, Orozco J, Wang J (2011) Motion-based sensing and biosensing using electrochemically-propelled nanomotors. Analyst 136:4621

    Google Scholar 

  21. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549

    Article  CAS  Google Scholar 

  22. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, D’Souza F (2009) Anal Chem 81:2633

    Article  CAS  Google Scholar 

  23. Pietrzyk A, Kutner W, Chitta R, Zandler ME, D’Souza F, Sannicolò F, Mussini PR (2009) Anal Chem 81:10061

    Article  CAS  Google Scholar 

  24. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, Zandler ME, D’Souza F (2010) Biosens Bioelectron 25:2522

    Article  CAS  Google Scholar 

  25. Pietrzyk A, Suriyanarayanan S, Kutner W, Maligaspe E, Zandler ME, D’Souza F (2010) Bioelectrochemistry 80:62–72

    Article  CAS  Google Scholar 

  26. Rotariu L, Zamfir L-G, Bala C (2010) Sens Actuators B Chem 150:73

    Article  Google Scholar 

  27. Gurban A-M, Noguer T, Bala C, Rotariu L (2008) Sens Actuators B Chem 128(2):536

    Article  Google Scholar 

  28. Rotariu L, Zamfir LG, Bala C (2011) A novel sensitive, reusable and low potential acetycholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluorate/multiwalled carbon nanotubes gel. Biosens Bioelectron 26:3692–3695

    Article  Google Scholar 

  29. Gurban AM, Rotariu L, Baibarac M, Baltog I, Bala C (2011) Talanta 85:2007

    Article  CAS  Google Scholar 

  30. van Apeldoorn ME et al (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60

    Article  Google Scholar 

  31. Azevedo SMFO, Carmichael WW, Jochimsen EM (2002) Toxicology 181:441–  446

    Google Scholar 

  32. Santos PVF et al. (in press) Electroanalysis, 2011.

    Google Scholar 

  33. Oliveira SC, Oliveira-Brett AM (2010) Comb Chem High Throughput Screen 13:628

    CAS  Google Scholar 

  34. Campuzano S, de Avila Esteban Fernández B, Yuste J, Pedrero M, García JL, García P, García E, Pingarrón JM (2010) Biosens Bioelectron 26:1225–1230

    Article  CAS  Google Scholar 

  35. Loaiza O, Campuzano S, Pedrero M, Pividori M, García P, Pingarrón JM (2009) Anal Chem 80:8239

    Article  Google Scholar 

  36. Loaiza O, Campuzano S, Pedrero M, García P, Pingarrón JM (2009) Analyst 134:34

    Article  CAS  Google Scholar 

  37. Campuzano S, de Ávila Esteban Fernández B, Yuste J, Pedrero M, García JL, García P, García E, Pingarrón JM (2011) Anal Bional Chem 399:2413

    Article  CAS  Google Scholar 

  38. Hianik T, Wang J (2009) Electroanalysis 21:1223

    Article  CAS  Google Scholar 

  39. Lamberti I, Mosiello L, Hianik T (2011) Chem Sens 1:11

    Google Scholar 

  40. Arduini F, Ricci F, Amine A, Moscone D, Palleschi G (2007) Anal Bioanal Chem 388:1049

    Article  CAS  Google Scholar 

  41. Delibato E, Bancone M, Volpe G, Delibato E, Bancone M, Volpe G, De Medici D, Moscone D, Palleschi G (2005) Anal Lett 38:1569

    Article  CAS  Google Scholar 

  42. Micheli L, DI Stefano S, Moscone D, Palleschi G, Marini S, Coletta M, Draisci R, Delli Quadri F (2002) Anal Bioanal Chem 373:678

    Article  CAS  Google Scholar 

  43. Alarcon SH, PALLESCHI G, Compagnone D, Pascale M, Visconti A, Barna-Vetro I (2006) Talanta 69:1031

    Article  CAS  Google Scholar 

  44. Piermarini S, Micheli L, Ammida NHS, Palleschi G, Moscone D (2007) Biosens Bioelectron 22:1434

    Article  CAS  Google Scholar 

  45. Neagu D, Capodilupo A, Vilkanauskyte A, Micheli L, Palleschi G, Moscone D (2009) Anal Lett 42(8):1170–1186

    Article  CAS  Google Scholar 

  46. Arduini F, Errico I, Amine A, Micheli L, Palleschi G, Moscone D (2007) Anal Chem 79:3409

    Article  CAS  Google Scholar 

  47. Stoikova EE, Evtugyn GA et al (2001) Macrocyclic Chem 39:339

    Article  CAS  Google Scholar 

  48. Evtuygin GA, Stoikova EE, Budnikov GK (2003) J Anal Chem 58:1151

    Article  Google Scholar 

  49. Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G (2011) Talanta 85:216

    Article  CAS  Google Scholar 

  50. Liu Y, Danielsson B (2005) Fluorometric broad-range screening of compounds with affinity for nucleic acids. Anal Chem 7(7):2450

    Article  Google Scholar 

  51. Liu Y, Danielsson B (2006) Rapid fluorometric screening of antibiotics in seafood. Microchim Acta 15(3):133

    Article  Google Scholar 

  52. Liu Y, Danielsson B (2007) Rapid high throughput assay for fluorimetric detection of doxorubicin-application of nucleic acid-dye bioprobe. Anal Chim Acta 58(7):47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Nikolelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Nikoleli, GP., Nikolelis, D.P., Tzamtzis, N. (2012). Portable Biosensors for the Rapid Detection of Biochemical Weapons of Terrorism. In: Nikolelis, D. (eds) Portable Chemical Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2872-1_1

Download citation

Publish with us

Policies and ethics