Skip to main content

Role of Mitochondrial Function in Insulin Resistance

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 942))

Abstract

The obesity pandemic increases the prevalence of type 2 diabetes (DM2).

DM2 develops when pancreatic β-cells fail and cannot compensate for the decrease in insulin sensitivity. How excessive caloric intake and weight gain cause insulin resistance has not completely been elucidated.

Skeletal muscle is responsible for a major part of insulin stimulated whole-body glucose disposal and, hence, plays an important role in the pathogenesis of insulin resistance.

It has been hypothesized that skeletal muscle mitochondrial dysfunction is involved in the accumulation of intramyocellular lipid metabolites leading to lipotoxicity and insulin resistance. However, findings on skeletal muscle mitochondrial function in relation to insulin resistance in human subjects are inconclusive. Differences in mitochondrial activity can be the result of several factors, including a reduced mitochondrial density, differences in insulin stimulated mitochondrial respiration, lower energy demand or reduced skeletal muscle perfusion, besides an intrinsic mitochondrial defect. The inconclusive results may be explained by the use of different techniques and study populations. Also, mitochondrial capacity is in far excess to meet energy requirements and therefore it may be questioned whether a reduced mitochondrial capacity limits mitochondrial fatty acid oxidation. Whether reduced mitochondrial function is causally related to insulin resistance or rather a consequence of the sedentary lifestyle remains to be elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249

    PubMed  CAS  Google Scholar 

  • Asmann YW et al (2006) Skeletal muscle mitochondrial functions, mitochondrial DNA copy numbers, and gene transcript profiles in type 2 diabetic and nondiabetic subjects at equal levels of low or high insulin and euglycemia. Diabetes 55(12):3309–3319

    PubMed  CAS  Google Scholar 

  • Bach D et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278(19):17190–17197

    PubMed  CAS  Google Scholar 

  • Bao S et al (1998) Expression of mRNAs encoding uncoupling proteins in human skeletal muscle: effects of obesity and diabetes. Diabetes 47(12):1935–1940

    PubMed  CAS  Google Scholar 

  • Baron AD et al (1993) Skeletal muscle blood flow. A possible link between insulin resistance and blood pressure. Hypertension 21(2):129–135

    PubMed  CAS  Google Scholar 

  • Befroy DE et al (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56(5):1376–1381

    PubMed  CAS  Google Scholar 

  • Belfort R et al (2005) Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54(6):1640–1648

    PubMed  CAS  Google Scholar 

  • Berggren JR et al (2008) Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab 294(4):E726–E732

    PubMed  CAS  Google Scholar 

  • Bergman RN (2007) Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes 56(6):1489–1501

    PubMed  CAS  Google Scholar 

  • Boden G (2002) Interaction between free fatty acids and glucose metabolism. Curr Opin Clin Nutr Metab Care 5(5):545–549

    PubMed  CAS  Google Scholar 

  • Bonnard C et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118(2):789–800

    PubMed  CAS  Google Scholar 

  • Boss O, Hagen T, Lowell BB (2000) Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes 49(2):143–156

    PubMed  CAS  Google Scholar 

  • Bouchard C et al (1999) Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol 87(3):1003–1008

    PubMed  CAS  Google Scholar 

  • Boushel R et al (2007) Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50(4):790–796

    PubMed  CAS  Google Scholar 

  • Brands M et al (2011) Short-term increase of plasma free fatty acids does not interfere with intrinsic mitochondrial function in healthy young men. Metabolism 60(10):1398–1405

    PubMed  CAS  Google Scholar 

  • Brehm A et al (2006) Increased lipid availability impairs insulin-stimulated ATP synthesis in human skeletal muscle. Diabetes 55(1):136–140

    PubMed  CAS  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    PubMed  CAS  Google Scholar 

  • Carter SL et al (2001) Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol 79(5):386–392

    PubMed  CAS  Google Scholar 

  • Chavez AO et al (2010) Effect of short-term free Fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals. J Clin Endocrinol Metab 95(1):422–429

    PubMed  CAS  Google Scholar 

  • Chi MM et al (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol 244(3):C276–C287

    PubMed  CAS  Google Scholar 

  • Ciapaite J et al (2005) Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria. Diabetes 54(4):944–951

    PubMed  CAS  Google Scholar 

  • Civitarese AE, Ravussin E (2008) Mitochondrial energetics and insulin resistance. Endocrinology 149(3):950–954

    PubMed  CAS  Google Scholar 

  • Cogswell AM, Cogswell AM, Stevens RJ, Hood DA (1993) Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol 264(2 Pt 1):C383–C389

    PubMed  CAS  Google Scholar 

  • Costford SR et al (2009) Increased susceptibility to oxidative damage in post-diabetic human myotubes. Diabetologia 52(11):2405–2415

    PubMed  CAS  Google Scholar 

  • De Feyter HM et al (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158(5):643–653

    PubMed  Google Scholar 

  • DeFronzo RA et al (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 76(1):149–155

    PubMed  CAS  Google Scholar 

  • Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51(7):1100–1110

    PubMed  CAS  Google Scholar 

  • Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55(2):628–634

    PubMed  CAS  Google Scholar 

  • Frederiksen CM et al (2008) Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia 51(11):2068–2077

    PubMed  CAS  Google Scholar 

  • Gadian DG, Radda GK (1981) NMR studies of tissue metabolism. Annu Rev Biochem 50:69–83

    PubMed  CAS  Google Scholar 

  • Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845

    PubMed  CAS  Google Scholar 

  • Guillet C et al (2009) Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J Clin Endocrinol Metab 94(8):3044–3050

    PubMed  CAS  Google Scholar 

  • Hancock CR et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105(22):7815–7820

    PubMed  CAS  Google Scholar 

  • He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50(4):817–823

    PubMed  CAS  Google Scholar 

  • Heilbronn LK et al (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92(4):1467–1473

    PubMed  CAS  Google Scholar 

  • Holloszy JO (2009) Skeletal muscle “mitochondrial deficiency” does not mediate insulin resistance. Am J Clin Nutr 89(1):463S–466S

    PubMed  CAS  Google Scholar 

  • Holloway GP et al (2007) Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab 292(6):E1782–E1789

    PubMed  CAS  Google Scholar 

  • Holloway GP, Bonen A, Spriet LL (2009) Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr 89(1):455S–462S

    PubMed  CAS  Google Scholar 

  • Hood DA (2001) Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90(3):1137–1157

    PubMed  CAS  Google Scholar 

  • Hoppeler H et al (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59(2):320–327

    PubMed  CAS  Google Scholar 

  • Karakelides H et al (2010) Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 59(1):89–97

    PubMed  CAS  Google Scholar 

  • Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950

    PubMed  CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6(1):66–72

    PubMed  CAS  Google Scholar 

  • Khalfallah Y et al (2000) Regulation of uncoupling protein-2 and uncoupling protein-3 mRNA expression during lipid infusion in human skeletal muscle and subcutaneous adipose tissue. Diabetes 49(1):25–31

    PubMed  CAS  Google Scholar 

  • Koutsari C, Jensen MD (2006) Thematic review series: patient-oriented research. Free fatty acid metabolism in human obesity. J Lipid Res 47(8):1643–1650

    PubMed  CAS  Google Scholar 

  • Koves TR et al (2005) Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am J Physiol Cell Physiol 288(5):C1074–C1082

    PubMed  CAS  Google Scholar 

  • Koves TR et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56

    PubMed  CAS  Google Scholar 

  • Krook A et al (1998) Uncoupling protein 3 is reduced in skeletal muscle of NIDDM patients. Diabetes 47(9):1528–1531

    PubMed  CAS  Google Scholar 

  • Larsson L, Ansved T (1985) Effects of long-term physical training and detraining on enzyme histochemical and functional skeletal muscle characteristic in man. Muscle Nerve 8(8):714–722

    PubMed  CAS  Google Scholar 

  • Malenfant P et al (2001) Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord 25(9):1316–1321

    PubMed  CAS  Google Scholar 

  • Meex RC et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59(3):572–579

    PubMed  CAS  Google Scholar 

  • Menshikova EV et al (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab 288(4):E818–E825

    PubMed  CAS  Google Scholar 

  • Menshikova EV et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61(6):534–540

    PubMed  Google Scholar 

  • Mogensen M et al (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56(6):1592–1599

    PubMed  CAS  Google Scholar 

  • Mootha VK et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    PubMed  CAS  Google Scholar 

  • Morino K et al (2005) Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 115(12):3587–3593

    PubMed  CAS  Google Scholar 

  • Nair KS et al (2008) Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57(5):1166–1175

    PubMed  CAS  Google Scholar 

  • Nuutila P et al (2000) Enhanced stimulation of glucose uptake by insulin increases exercise-stimulated glucose uptake in skeletal muscle in humans: studies using [15O]O2, [15O]H2O, [18F]fluoro-deoxy-glucose, and positron emission tomography. Diabetes 49(7):1084–1091

    PubMed  CAS  Google Scholar 

  • Nyholm B et al (1997) Evidence of an increased number of type IIb muscle fibers in insulin-resistant first-degree relatives of patients with NIDDM. Diabetes 46(11):1822–1828

    PubMed  CAS  Google Scholar 

  • Oberbach A et al (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29(4):895–900

    PubMed  CAS  Google Scholar 

  • Ogata T, Yamasaki Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248(2):214–223

    PubMed  CAS  Google Scholar 

  • Patti ME et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100(14):8466–8471

    PubMed  CAS  Google Scholar 

  • Perseghin G et al (1997) Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes 46(6):1001–1009

    PubMed  CAS  Google Scholar 

  • Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350(7):664–671

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223

    PubMed  CAS  Google Scholar 

  • Phielix E et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57(11):2943–2949

    PubMed  CAS  Google Scholar 

  • Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546(Pt 3):851–858

    PubMed  CAS  Google Scholar 

  • Puntschart A et al (1995) mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. Am J Physiol 269(3 Pt 1):C619–C625

    PubMed  CAS  Google Scholar 

  • Rabol R et al (2010) Regional anatomic differences in skeletal muscle mitochondrial respiration in type 2 diabetes and obesity. J Clin Endocrinol Metab 95(2):857–863

    PubMed  CAS  Google Scholar 

  • Rasmussen UF, Rasmussen HN (2000a) Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem 208(1-2):37–44

    PubMed  CAS  Google Scholar 

  • Rasmussen UF, Rasmussen HN (2000b) Human skeletal muscle mitochondrial capacity. Acta Physiol Scand 168(4):473–480

    PubMed  CAS  Google Scholar 

  • Richardson DK et al (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280(11):10290–10297

    PubMed  CAS  Google Scholar 

  • Ritov VB, Menshikova EV, Kelley DE (2004) High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal Biochem 333(1):27–38

    PubMed  CAS  Google Scholar 

  • Ritov VB et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54(1):8–14

    PubMed  CAS  Google Scholar 

  • Ritov VB, Menshikova EV, Kelley DE (2006) Analysis of cardiolipin in human muscle biopsy. J Chromatogr B Analyt Technol Biomed Life Sci 831(1-2):63–71

    PubMed  CAS  Google Scholar 

  • Roden M (2005) Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Lond) 29(S111)

    Google Scholar 

  • Rolfe DF, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol 271(4 Pt 1):C1380–C1389

    PubMed  CAS  Google Scholar 

  • Russell AP et al (2003) Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS Lett 551(1–3):104–106

    PubMed  CAS  Google Scholar 

  • Sahlin K, Sahlin K et al (1997) Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Physiol 273(1 Pt 1):C172–C178

    PubMed  CAS  Google Scholar 

  • Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76(1 Pt 1):469–477

    PubMed  CAS  Google Scholar 

  • Schrauwen P (2007) High-fat diet, muscular lipotoxicity and insulin resistance. Proc Nutr Soc 66(1):33–41

    PubMed  CAS  Google Scholar 

  • Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53(6):1412–1417

    PubMed  CAS  Google Scholar 

  • Schrauwen-Hinderling VB et al (2007) Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia 50(1):113–120

    PubMed  CAS  Google Scholar 

  • Shoffner JM, Wallace DC (1992) Mitochondrial genetics: principles and practice. Am J Hum Genet 51(6):1179–1186

    PubMed  CAS  Google Scholar 

  • Short KR et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102(15):5618–5623

    PubMed  CAS  Google Scholar 

  • Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106(2):171–176

    PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL (2001) 13C NMR of intermediary metabolism: implications for systemic physiology. Annu Rev Physiol 63:15–48

    PubMed  CAS  Google Scholar 

  • Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 257(4 Pt 1):E567–E572

    PubMed  CAS  Google Scholar 

  • Sreekumar R et al (2002) Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51(6):1913–1920

    PubMed  CAS  Google Scholar 

  • Stump CS et al (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100(13):7996–8001

    PubMed  CAS  Google Scholar 

  • Szendroedi J, Roden M (2008) Mitochondrial fitness and insulin sensitivity in humans. Diabetologia 51(12):2155–2167

    PubMed  CAS  Google Scholar 

  • Szendroedi J et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4(5):e154

    PubMed  Google Scholar 

  • Tanner CJ et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282(6):E1191–E1196

    PubMed  CAS  Google Scholar 

  • Tarnopolsky MA et al (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292(3):R1271–R1278

    PubMed  CAS  Google Scholar 

  • Thamer C et al (2003) Reduced skeletal muscle oxygen uptake and reduced beta-cell function: two early abnormalities in normal glucose-tolerant offspring of patients with type 2 diabetes. Diabetes Care 26(7):2126–2132

    PubMed  Google Scholar 

  • Toledo FG, Watkins S, Kelley DE (2006) Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 91(8):3224–3227

    PubMed  CAS  Google Scholar 

  • Toledo FG et al (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57(4):987–994

    PubMed  CAS  Google Scholar 

  • Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161(3):345–353

    PubMed  CAS  Google Scholar 

  • Tonkonogi M, Harris B, Sahlin K (1997) Increased activity of citrate synthase in human skeletal muscle after a single bout of prolonged exercise. Acta Physiol Scand 161(3):435–436

    PubMed  CAS  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097

    PubMed  CAS  Google Scholar 

  • Ukropcova B et al (2007) Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle. Diabetes 56(3):720–727

    PubMed  CAS  Google Scholar 

  • van den Broek NM et al (2010) Increased mitochondrial content rescues in vivo muscle oxidative capacity in long-term high-fat-diet-fed rats. FASEB J 24(5):1354–1364

    PubMed  Google Scholar 

  • Vondra K et al (1977) Enzyme activities in quadriceps femoris muscle of obese diabetic male patients. Diabetologia 13(5):527–529

    PubMed  CAS  Google Scholar 

  • Wang H et al (1999) Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol 80(1):22–27

    PubMed  CAS  Google Scholar 

  • Wibom R, Hagenfeldt L, von Dobeln U (2002) Measurement of ATP production and respiratory chain enzyme activities in mitochondria isolated from small muscle biopsy samples. Anal Biochem 311(2):139–151

    PubMed  CAS  Google Scholar 

  • Wittig I, Schagger H (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787(6):672–680

    PubMed  CAS  Google Scholar 

  • Wu Z et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille J. Serlie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brands, M., Verhoeven, A.J., Serlie, M.J. (2012). Role of Mitochondrial Function in Insulin Resistance. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_9

Download citation

Publish with us

Policies and ethics