Skip to main content

Mitochondrial Proteomic Approaches for New Potential Diagnostic and Prognostic Biomarkers in Cancer

  • Chapter
  • First Online:
Advances in Mitochondrial Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 942))

Abstract

Mitochondrial dysfunction and mutations in mitochondrial DNA have been implicated in a wide variety of human diseases, including cancer. In recent years, considerable advances in genomic, proteomic and bioinformatic technologies have made it possible the analysis of mitochondrial proteome, leading to the identification of over 1,000 proteins which have been assigned unambiguously to mitochondria. Defining the mitochondrial proteome is a fundamental step for fully understanding the organelle functions as well as mechanisms underlying mitochondrial pathology. In fact, besides giving information on mitochondrial physiology, by characterizing all the components of this subcellular organelle, the application of proteomic technologies permitted now to study the proteins involved in many crucial properties in cell signaling, cell differentiation and cell death and, in particular, to identify mitochondrial proteins that are aberrantly expressed in cancer cells. An improved understanding of the mitochondrial proteome could be essential to shed light on the connection between mitochondrial dysfunction, deregulation of apoptosis and tumorigenesis and to discovery new therapeutic targets for mitochondria-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allal AS, Kahne T, Reverdin AK et al (2004) Radioresistance-related proteins in rectal cancer. Proteomics 4:2261–2269

    PubMed  CAS  Google Scholar 

  • Andreoli C, Prokisch H, Hortnagel K et al (2004) MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nucleic Acids Res 32:D459–D462

    PubMed  CAS  Google Scholar 

  • Balaban RS (2010) The mitochondrial proteome: a dynamic functional program in tissues and disease states. Environ Mol Mutagen 51:352–359

    PubMed  CAS  Google Scholar 

  • Balinsky D, Platz CE, Lewis JW (1983) Isozyme patterns of normal, benign, and malignant human breast tissues. Cancer Res 43:5895–5901

    PubMed  CAS  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    PubMed  CAS  Google Scholar 

  • Bottoni P, Giardina B, Vitali A et al (2009) A proteomic approach to characterizing ciglitazone-induced cancer cell differentiation in Hep-G2 cell line. Biochim Biophys Acta 1794:615–626

    PubMed  CAS  Google Scholar 

  • Brahimi-Horn MC, Chiche J, PouyssĂ©gur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    PubMed  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    PubMed  CAS  Google Scholar 

  • Calvo S, Mohit J, Xie X et al (2006) Systematic identification of human mitochondrial disease genes through integrated genomics. Nat Genet 38:576–582

    PubMed  CAS  Google Scholar 

  • Castagna A, Antonioli P, Astner H et al (2004) A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics 4:3246–3267

    PubMed  CAS  Google Scholar 

  • Chafey P, Finzi L, Boisgard R et al (2009) Proteomic analysis of beta-catenin activation in mouse liver by DIGE analysis identifies glucose metabolism as a new target of the Wnt pathway. Proteomics 9:3889–3900

    PubMed  CAS  Google Scholar 

  • Chen J, He QY, Yuen AP, Chiu JF (2004) Proteomics of buccal squamous cell carcinoma: the involvement of multiple pathways in tumorigenesis. Proteomics 4:2465–2475

    PubMed  CAS  Google Scholar 

  • Chen JS, Chen KT, Fan CW et al (2010) Comparison of membrane fraction proteomic profiles of normal and cancerous human colorectal tissues with gel-assisted digestion and iTRAQ labeling mass spectrometry. FEBS J 277:3028–3038

    PubMed  CAS  Google Scholar 

  • Chen YW, Chou HC, Lyu PC et al (2011) Mitochondrial proteomics analysis of tumorigenic and metastatic breast cancer markers. Funct Integr Genomics 11:225–239

    PubMed  CAS  Google Scholar 

  • Chiche J, Ilc K, Laferrière J et al (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    PubMed  CAS  Google Scholar 

  • Christofk HR, Vander Heiden MG, Wu N (2008) Pyruvate kinase M2 is a phosphotyrosinebinding protein. Nature 452:181–186

    PubMed  CAS  Google Scholar 

  • Dai Z, Yin J, He H et al (2010) Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 10:3789–3799

    PubMed  CAS  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:896–897

    Google Scholar 

  • De Berardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008a) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Google Scholar 

  • De Berardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008b) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    PubMed  CAS  Google Scholar 

  • Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094

    PubMed  CAS  Google Scholar 

  • Ding SJ, Li Y, Shao XX et al (2004) Proteome analysis of hepatocellular carcinoma cell strains, MHCC97- H and MHCC97-L, with different metastasis potentials. Proteomics 4:982–994

    PubMed  CAS  Google Scholar 

  • Douette P, Sluse FE (2006) Mitochondrial uncoupling proteins: new insights from functional and proteomic studies. Free Radic Biol Med 40:1097–1107

    PubMed  CAS  Google Scholar 

  • Du XL, Hu H, Lin DC et al (2007) Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J Mol Med 85:863–875

    PubMed  CAS  Google Scholar 

  • Dundas SR, Lawrie LC, Rooney PH, Murray GI (2005) Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 205:74–81

    PubMed  CAS  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    PubMed  CAS  Google Scholar 

  • Fliss MS, Usadel H, Caballero OL et al (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019

    PubMed  CAS  Google Scholar 

  • Forner F, Foster LJ, Campanaro S et al (2006) Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol Cell Proteomics 5:608–619

    PubMed  CAS  Google Scholar 

  • Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19:4–11

    PubMed  CAS  Google Scholar 

  • Fusaro G, Dasgupta P, Rastogi S et al (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853–47861

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Morselli E, Kepp O et al (2010) Mitochondrial gateways to cancer. Mol Aspects Med 31:1–20

    PubMed  CAS  Google Scholar 

  • Garber K (2006) Energy deregulation: licensing tumor to grow. Science 312:1158–1159

    PubMed  CAS  Google Scholar 

  • Gaucher SP, Taylor SW, Fahy E et al (2004) Expanded coverage of the human heart mitochondrial proteome using multidimensional liquid chromatography coupled with tandem mass spectrometry. J Proteome Res 3:495–505

    PubMed  CAS  Google Scholar 

  • Glen A, Gan CS, Hamdy FC et al (2008) iTRAQfacilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. J Proteome Res 7:897–907

    PubMed  CAS  Google Scholar 

  • Gottschalk S, Anderson N, Hainz C et al (2004) Imatinib (STI571) – mediated changes in glucose metabolism in human leukaemia BCR-ABL-positive cells. Clin Cancer Res 10:6661–6668

    PubMed  CAS  Google Scholar 

  • Gregory-Bass RC, Olatinwo M, Xu W et al (2008) Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer 122:1923–1930

    PubMed  CAS  Google Scholar 

  • Griffin TJ, Xie H, Brandhakavi S et al (2007) iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6:4200–4209

    PubMed  CAS  Google Scholar 

  • Gu Z, Li J, Gao S et al (2011) InterMitoBase: an annotated database and analysis platform of protein-protein interactions for human mitochondria. BMC Genomics 12:335

    PubMed  CAS  Google Scholar 

  • Guo T, Lee SS, Ng WH et al (2011) Global molecular dysfunctions in gastric cancer revealed by an integrated analysis of the phosphoproteome and transcriptome. Cell Mol Life Sci 68:1983–2002

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    PubMed  CAS  Google Scholar 

  • Hammerman PS, Fox CJ, Thompson CB (2004) Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci 29:586–592

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia-a key regulatory factor in tumor growth. Nat Rev Cancer 2:38–47

    PubMed  CAS  Google Scholar 

  • Harsha HC, Jimeno A, Molina H et al (2008) Activated epidermal growth factor receptor as a novel target in pancreatic cancer therapy. J Proteome Res 7:4651–4658

    Google Scholar 

  • Hayashi E, Kuramitsu Y, Fujimoto M et al (2009) Proteomic profiling of differential display analysis for human oral squamous cell carcinoma: 14-3-3 σ Protein is upregulated in human oral squamous cell carcinoma and dependent on the differentiation level. Proteomics Clin Appl 3:1338–1347

    PubMed  CAS  Google Scholar 

  • He QY, Cheung YH, Leung SY et al (2004) Diverse proteomic alterations in gastric adenocarcinoma. Proteomics 4:3276–3287

    PubMed  CAS  Google Scholar 

  • Huynen MA, de Hollander M, Szklarczyk R (2009) Mitochondrial proteome evolution and genetic disease. Biochim Biophys Acta 1792:1122–1129

    PubMed  CAS  Google Scholar 

  • Ibarrola N, Molina H, Iwahori A, Pandey A (2004) A novel proteomic approach for specific identification of tyrosine kinase substrates using 13C tyrosine. J Biol Chem 279:15805–15813

    PubMed  CAS  Google Scholar 

  • Jazii FR, Najafi Z, Malekzadeh R et al (2006) Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 12:7104–7112

    PubMed  CAS  Google Scholar 

  • Jiang YJ, Sun Q, Fang XS, Wang X (2009) Comparative mitochondrial proteomic analysis of Rji cells exposed to adriamycin. Mol Med 15:173–182

    PubMed  CAS  Google Scholar 

  • Johnson DT, Harris RA, French S et al (2007) Tissue heterogeneity of the mammalian mitochondrial proteome. Am J Physiol Cell Physiol 292:C689–C697

    PubMed  CAS  Google Scholar 

  • Johnson DT, Harris RA, French S et al (2009) Proteomic changes associated with diabetes in the BB-DP rat. Am J Physiol Endocrinol Metab 293:E422–E432

    Google Scholar 

  • Kawamoto M (1994) Breast cancer diagnosis by lactate dehydrogenase isozymes in nipple discharge. Cancer 73:1836–1841

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2007) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    Google Scholar 

  • Kim HK, Park WS, Kang SH et al (2007) Mitochondrial alterations in human gastric carcinoma cell line. Am J Physiol Cell Physiol 293:C761–C771

    PubMed  CAS  Google Scholar 

  • Kimbro KS, Simons JW (2006) Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer 13:739–749

    PubMed  CAS  Google Scholar 

  • Kimura K, Wada A, Ueta M et al (2010) Comparative proteomic analysis of the ribosomes in 5-fluorouracil resistance of a human colon cancer cell line using the radical-free and highly reducing method of two-dimensional polyacrylamide gel electrophoresis. Int J Oncol 37:1271–1278

    PubMed  CAS  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Simopoulos C et al (2005) Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 22:25–30

    PubMed  CAS  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Polychronidis A et al (2006) Endogenous markers of hypoxia/ anaerobic metabolism and anemia in primary colorectal cancer. Cancer Sci 97:582–588

    PubMed  CAS  Google Scholar 

  • Krieg RC, Knuechel R, Schiffmann E et al (2004) Mitochondrial proteome: cancer-altered metabolism associated with cytochrome c oxidase subunit level variation. Proteomics 4:2789–2795

    PubMed  CAS  Google Scholar 

  • Lee JD, Yang WI, Park YN et al (2005) Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake. J Nucl Med 46:1753–1759

    PubMed  CAS  Google Scholar 

  • Leiblich A, Cross SS, Catto JW et al (2006) Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene 25:2953–2960

    PubMed  CAS  Google Scholar 

  • Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    PubMed  CAS  Google Scholar 

  • Liu R, Li Z, Bai S et al (2009) Mechanism of cancer cell adaptation to metabolic stress: proteomics identification of a novel thyroid hormone-mediated gastric carcinogenic signaling pathway. Mol Cell Proteomics 8:70–85

    PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2010) The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 1797:1225–1230

    PubMed  CAS  Google Scholar 

  • Mathy G, Sluse FE (2008) Mitochondrial comparative proteomics: strengths and pitfalls. Biochim Biophys Acta 1777:1072–1077

    PubMed  CAS  Google Scholar 

  • McDonald T, Sheng S, Stanley B et al (2006) Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol Cell Proteomics 5:2392–2411

    PubMed  CAS  Google Scholar 

  • Meisinger C, Sickmann A, Pfanner N (2008) The mitochondrial proteome: from inventory to function. Cell 134:22–24

    PubMed  CAS  Google Scholar 

  • Michal G (1999) Biochemical pathways: an atlas of biochemistry and molecular biology. Wiley, New York

    Google Scholar 

  • Millard M, Pathania D, Shabaik Y et al (2010) Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 5(10):e13131

    PubMed  Google Scholar 

  • Miller S, Ross-Inta C, Giulivi C (2007) Kinetic and proteomic analyses of S-nitrosoglutathione-treated hexokinase A: consequences for cancer energy metabolism. Amino Acids 32:593–602

    PubMed  CAS  Google Scholar 

  • Mootha VK, Bunkenborg J, Olsen JV et al (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640

    PubMed  CAS  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    PubMed  CAS  Google Scholar 

  • Nishigaki R, Osaki M, Hiratsuka M et al (2005) Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 5:3205–3213

    PubMed  CAS  Google Scholar 

  • Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    PubMed  CAS  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123

    PubMed  CAS  Google Scholar 

  • Parman CE, Javali H, Wood D et al (2007) P207-T protein identification and quantitative analysis of complex mixtures using a peptide-based isobaric mass tagging technology. J Biomol Technol 18:72

    Google Scholar 

  • Patel N, Chatterjee SK, Vrbanac V et al (2010) Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA 107:2503–2508

    PubMed  CAS  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    PubMed  CAS  Google Scholar 

  • Pflieger D, Le Caer JP, Lemaire C et al (2002) Systematic identification of mitochondrial proteins by LC-MS/MS. Anal Chem 74:2400–2406

    PubMed  CAS  Google Scholar 

  • Pocaly M, Lagarde V, Etienne G et al (2008) Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance. Proteomics 8:2394–2406

    PubMed  CAS  Google Scholar 

  • Reja R, Venkatakrishnan AJ, Lee J et al (2009) MitoInteractome: mitochondrial protein interactome database, and its application in ‘aging network’ analysis. BMC Genomics 10(Suppl 3):S20

    PubMed  Google Scholar 

  • Rezaul K, Wu L, Mayya V et al (2005) A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics 4:169–181

    PubMed  CAS  Google Scholar 

  • Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696

    PubMed  CAS  Google Scholar 

  • Scatena R, Bottoni P, Pontoglio A et al (2008) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17:1533–1545

    PubMed  CAS  Google Scholar 

  • Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 4:143–158

    PubMed  CAS  Google Scholar 

  • Scharfe C, Zaccaria P, Hoertnagel K et al (2000) MITOP, the mitochondrial proteome database: 2000 update. Nucleic Acids Res 28:155–158

    PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    PubMed  CAS  Google Scholar 

  • Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19:12–16

    PubMed  CAS  Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    PubMed  CAS  Google Scholar 

  • Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18:598–608

    PubMed  CAS  Google Scholar 

  • Shin YK, Yoo BC, Chang HJ et al (2005) Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 65:3162–3170

    PubMed  CAS  Google Scholar 

  • Short DM, Heron ID, Birse-Archbold JL et al (2007) Apoptosis induced by staurosporine alters chaperone and endoplasmic reticulum proteins: identification by quantitative proteomics. Proteomics 7:3085–3096

    PubMed  CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    PubMed  CAS  Google Scholar 

  • Smith L, Welham KJ, Watson MB et al (2007) The proteomic analysis of cisplatin resistance in breast cancer cells. Oncol Res 16:497–506

    PubMed  CAS  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177

    PubMed  CAS  Google Scholar 

  • Stigliano A, Cerquetti L, Borro M et al (2008) Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane. Endocr Relat Cancer 15:1–10

    PubMed  CAS  Google Scholar 

  • Strong R, Nakanishi T, Ross D, Fenselau C (2006) Alterations in the mitochondrial proteome of adriamycin resistant MCF-7 breast cancer cells. J Proteome Res 5:2389–2395

    PubMed  CAS  Google Scholar 

  • Sun W, Xing B, Sun Y et al (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics 6:1798–1808

    PubMed  CAS  Google Scholar 

  • Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26:299–310

    PubMed  CAS  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K et al (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8:1291–1297

    PubMed  CAS  Google Scholar 

  • Taylor SW, Fahy E, Zhang B et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    PubMed  CAS  Google Scholar 

  • Tomlinson IP, Alam NA, Rowan AJ et al (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    PubMed  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    PubMed  CAS  Google Scholar 

  • Unwin RD, Craven RA, Harnden P et al (2003) Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3:1620–1632

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed  CAS  Google Scholar 

  • Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9:10–17

    PubMed  CAS  Google Scholar 

  • Verma M, Kagan J, Sidransky D, Srivastava S (2003) Proteomic analysis of cancer-cell mitochondria. Nat Rev Cancer 3:789–795

    PubMed  CAS  Google Scholar 

  • Voss T, Ahorn H, Haberl P et al (2001) Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Int J Cancer 91:180–186

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Yaguchi T, Hasan MK et al (2002) Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 274:246–253

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Yaguchi T, Hasan MK et al (2003) Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun 302:735–742

    PubMed  CAS  Google Scholar 

  • Wang Y, He QY, Sun RW et al (2005) GoldIII porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species. Cancer Res 65:11553–11564

    PubMed  CAS  Google Scholar 

  • Wang J, Gutierrez P, Edwards N, Fenselau C (2007) Integration of 18O labeling and solution isoelectric focusing in a shotgun analysis of mitochondrial proteins. J Proteome Res 6:4601–4607

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Sanchez JC et al (1998) Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis 19:1501–1505

    PubMed  CAS  Google Scholar 

  • Wozny W, Schroer K, Schwall GP et al (2007) Differential radioactive quantification of protein abundance ratios between benign and malignant prostate tissues: cancer association of annexin A3. Proteomics 7:313–322

    PubMed  CAS  Google Scholar 

  • Young TW, Mei FC, Yang G et al (2004) Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry. Cancer Res 64:4577–4584

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Bottoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bottoni, P., Giardina, B., Pontoglio, A., ScarĂ , S., Scatena, R. (2012). Mitochondrial Proteomic Approaches for New Potential Diagnostic and Prognostic Biomarkers in Cancer. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_19

Download citation

Publish with us

Policies and ethics