Skip to main content

Mitochondria and Cancer: A Growing Role in Apoptosis, Cancer Cell Metabolism and Dedifferentiation

  • Chapter
  • First Online:
Advances in Mitochondrial Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 942))

Abstract

At the beginning of the twentieth century, Otto Warburg demonstrated that cancer cells have a peculiar metabolism. These cells preferentially utilise glycolysis for energetic and anabolic purposes, producing large quantities of lactic acid. He defined this unusual metabolism “aerobic glycolysis”. At the same time, Warburg hypothesised that a disruption of mitochondrial activities played a precise pathogenic role in cancer. Because of this so-called “Warburg effect”, mitochondrial physiology and cellular respiration in particular have been overlooked in pathophysiological studies of cancer. Over time, however, many studies have shown that mitochondria play a fundamental role in cell death by apoptosis or necrosis. Moreover, metabolic enzymes of the Krebs cycle have also recently been recognised as oncosuppressors. Recently, a series of studies were undertaken to re-evaluate the role of oxidative mitochondrial metabolism in cancer cell growth and progression. Some of these data indicate that modulation of mitochondrial respiration may induce an arrest of cancer cell proliferation and differentiation (pseudodifferentiation) and/or or death, suggesting that iatrogenic manipulation of some mitochondrial activities may induce anticancer effects. Moreover, studying the role of mitochondria in cancer cell dedifferentiation/differentiation processes may allow further insight into the pathophysiology and therapy of so-called cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvero AB, Montagna MK, Holmberg JC et al (2011) Targeting the mitochondria activates two independent cell death pathways in the ovarian cancer stem cells. Mol Cancer Ther 10:1385–1393

    PubMed  CAS  Google Scholar 

  • Amuthan G, Biswas G, Ananadatheerthavarada HK et al (2002) Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21:7839–7849

    PubMed  CAS  Google Scholar 

  • Balaban RS, Bader JP (1984) Studies on the relationship between glycolysis and (Na+ K+)-ATPase in cultured cells. Biochim Biophys Acta 804:419–426

    PubMed  CAS  Google Scholar 

  • Bellance N, Lestienne P, Rossignol R (2009) Mitochondria from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14:4015–4034

    PubMed  Google Scholar 

  • Bensaad K, Vousden KH (2007) P53: new roles in metabolism. Trends Cell Biol 17:286–291

    PubMed  CAS  Google Scholar 

  • Bottoni P, Giardina B, Martorana GE et al (2005) A two-dimensional electrophoresis preliminary approach to human hepatocarcinoma differentiation induced by PPAR-agonists. J Cell Mol Med 9:462–467

    PubMed  CAS  Google Scholar 

  • Bottoni P, Giardina B, Vitali A et al (2009) A proteomic approach to characterizing ciglitazone-induced cancer cell differentiation in Hep-G2 cell line. Biochim Biophys Acta 1794:615–626

    PubMed  CAS  Google Scholar 

  • Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    PubMed  CAS  Google Scholar 

  • Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25:17–26

    PubMed  CAS  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB et al (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    PubMed  CAS  Google Scholar 

  • Chen EI, Hewel J, Krueger JS et al (2007a) Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–1486

    PubMed  CAS  Google Scholar 

  • Chen Y, Voegeli TS, Liu PP et al (2007b) Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm Allergy Drug Targets 6:91–100

    PubMed  CAS  Google Scholar 

  • Chen ZX, Velaithan R, Pervaiz S (2009) MitoEnergetics and cancer cell fate. Biochim Biophys Acta 1787:462–467

    PubMed  CAS  Google Scholar 

  • Cheng T, Sudderth J, Yang C et al (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108:8674–8679

    PubMed  CAS  Google Scholar 

  • Costello LC, Franklin RB (2005) Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8

    PubMed  CAS  Google Scholar 

  • Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681

    PubMed  CAS  Google Scholar 

  • Cuezva JM, Chen G, Alonso AM et al (2004) The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis 25:1157–1163

    PubMed  CAS  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720

    PubMed  CAS  Google Scholar 

  • D’Souza GG, Wagle MA, Saxena V, Shah A (2011) Approaches for targeting mitochondria in cancer therapy. Biochim Biophys Acta 1807:689–696

    PubMed  Google Scholar 

  • Dang CV, Hamaker M, Sun P et al (2011) Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl) 89:205–212

    CAS  Google Scholar 

  • Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786–8803

    PubMed  CAS  Google Scholar 

  • DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    PubMed  CAS  Google Scholar 

  • Deberardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008a) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    PubMed  CAS  Google Scholar 

  • Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008b) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61

    PubMed  CAS  Google Scholar 

  • Deichmann M, Kahle B, Benner A et al (2004) Somatic mitochondrial mutations in melanoma resection specimens. Int J Oncol 24:137–141

    PubMed  CAS  Google Scholar 

  • Dundas SR, Lawrie LC, Rooney PH, Murray GI (2005) Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Patholm 205:74–81

    CAS  Google Scholar 

  • Elgadi KM, Meguid RA, Qian M et al (1999) Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiol Genomics 1:51–62

    PubMed  CAS  Google Scholar 

  • Fan Y, Dickman KG, Zong WX (2010) Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285:7324–7333

    PubMed  CAS  Google Scholar 

  • Fantin VR, Leder P (2006) Mitochondriotoxic compounds for cancer therapy. Oncogene 25:4787–4797

    PubMed  CAS  Google Scholar 

  • Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    PubMed  CAS  Google Scholar 

  • Felty Q, Roy D (2005) Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog 4:1–18

    PubMed  Google Scholar 

  • Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19:4–11

    PubMed  CAS  Google Scholar 

  • Frezza C, Zheng L, Folger O et al (2011) Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature. doi:10.1038/nature10363

    Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    PubMed  CAS  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Larochette N, Zamzami N, Kroemer G (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25:4812–4830

    PubMed  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    PubMed  CAS  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    PubMed  CAS  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2009) Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19:57–66

    PubMed  CAS  Google Scholar 

  • Green A, Beer P (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370

    PubMed  CAS  Google Scholar 

  • He Y, Wu J, Dressman DC et al (2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464:610–614

    PubMed  CAS  Google Scholar 

  • Herrnstadt C, Preston G, Howell N (2003) Errors, phantoms and otherwise, in human mtDNA sequences. Am J Hum Genet 72:1585–1586

    PubMed  CAS  Google Scholar 

  • Hoang AT, Huang J, Rudra-Ganguly N et al (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156:857–864

    PubMed  CAS  Google Scholar 

  • Horton TM, Petros JA, Heddi A et al (1996) Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosomes Cancer 15:95–101

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    PubMed  CAS  Google Scholar 

  • Jezek P, Plecitá-Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622

    PubMed  CAS  Google Scholar 

  • Jiang P, Du W, Wang X et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Schlenger KH, Kloes M et al (1989) Tumor blood flow: the principal modulator of oxidative and glycolytic metabolism, and of the metabolic micromilieu of human tumor xenografts in vivo. Int J Cancer 44:266–272

    PubMed  CAS  Google Scholar 

  • Keezer SM, Ivie SE, Krutzsch HC et al (2003) Angiogenesis inhibitors target the endothelial cell cytoskeleton through altered regulation of heat shock protein 27 and cofilin. Cancer Res 63:6405–6412

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30:142–150

    PubMed  CAS  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    PubMed  CAS  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    PubMed  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    PubMed  CAS  Google Scholar 

  • Le A, Cooper CR, Gouw AM et al (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 107:2037–2042

    PubMed  CAS  Google Scholar 

  • Lee HC, Li SH, Lin JC et al (2004) Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res 547:71–78

    PubMed  CAS  Google Scholar 

  • Liu H, Hu YP, Savaraj N et al (2001) Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40:5542–5547

    PubMed  CAS  Google Scholar 

  • Lowry OH, Berger SJ, Carter JG et al (1983) Diversity of metabolic patterns in human brain tumors: enzymes of energy metabolism and related metabolites and cofactors. J Neurochem 41:994–1010

    PubMed  CAS  Google Scholar 

  • Lueth M, von Deimling A, Pietsch T et al (2010) Medulloblastoma harbor somatic mitochondrial DNA mutations in the D-loop region. J Pediatr Hematol Oncol 32:156–159

    PubMed  Google Scholar 

  • Maddocks ODK, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89:237–245

    PubMed  CAS  Google Scholar 

  • Mai A, Massa S, Rotili D et al (2005) Exploring the connection unit in the HDAC inhibitor pharmacophore model: novel uracil-based hydroxamates. Bioorg Med Chem Lett 15:4656–4661

    PubMed  Google Scholar 

  • Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ et al (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101

    PubMed  Google Scholar 

  • Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S et al (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767

    PubMed  Google Scholar 

  • Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB et al (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–3276

    PubMed  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Lin Z, Ko YH et al (2011) Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle 10:2521–2528

    PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    PubMed  CAS  Google Scholar 

  • Meng M, Chen S, Lao T et al (2010) Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle 9:3921–3932

    PubMed  CAS  Google Scholar 

  • Michalik L, Desvergne B, Wahli W (2004) Peroxisome proliferator-activated receptor and cancers: complex stories. Nat Rev Cancer 4:61–70

    PubMed  CAS  Google Scholar 

  • Modica-Napolitano JS, Singh KK (2004) Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762

    PubMed  CAS  Google Scholar 

  • Moll UM, Marchenko N, Zhang XK (2006) p53 and Nur77/TR3 - transcription factors that directly target mitochondria for cell death induction. Oncogene 25:4725–4743

    PubMed  CAS  Google Scholar 

  • Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3:214–220

    PubMed  CAS  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    PubMed  CAS  Google Scholar 

  • Moreno-Sánchez R, Rodríguez-Enríquez S, Saavedra E et al (2009) The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells? Biofactors 35:209–225

    PubMed  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599

    PubMed  CAS  Google Scholar 

  • Nakashima RA, Paggi MG, Pedersen PL (1984) Contributions of glycolysis and oxidative phosphorylation to adenosine 5′-triphosphate production in AS-30D hepatoma cells. Cancer Res 44(12 Pt 1):5702–5706

    PubMed  CAS  Google Scholar 

  • Naumov GN, Bender E, Zurakowski D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    PubMed  Google Scholar 

  • Nomoto S, Yamashita K, Koshikawa K et al (2002) Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res 8:481–487

    PubMed  CAS  Google Scholar 

  • Parra-Bonilla G, Alvarez DF, Al-Mehdi AB et al (2010) Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 299:L513–L522

    PubMed  CAS  Google Scholar 

  • Parr RL, Dakubo GD, Crandall KA et al (2006) Somatic mitochondrial DNA mutations in prostate cancer and ­normal appearing adjacent glands in comparison to age-matched prostate samples without malignant histology. J Mol Diagn 8:312–319

    PubMed  CAS  Google Scholar 

  • Parrella P, Xiao Y, Fliss M et al (2001) Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 61:7623–7626

    PubMed  CAS  Google Scholar 

  • Pockley AG (2001) Heat shock proteins in health and disease: therapeutic targets or therapeutics agents? Expert Rev Mol Med 3:1–21

    PubMed  CAS  Google Scholar 

  • Pollard PJ, Brière JJ, Alam NA et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    PubMed  CAS  Google Scholar 

  • Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581:3758–3769

    PubMed  CAS  Google Scholar 

  • Puzio-Kuter AM (2011) The role of p53 in metabolic regulation. Genes Cancer 2:385–391

    PubMed  CAS  Google Scholar 

  • Raj L, Ide T, Gurkar AU et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    PubMed  CAS  Google Scholar 

  • Richards FM, Watson A, Hickman JA (1988) Investigation of the effects of heat shock and agents which induce a heat shock response on the induction of differentiation of HL-60 cells. Cancer Res 48:6715–6720

    CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Cell Mol Life Sci 18:571–573

    CAS  Google Scholar 

  • Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19:25–31

    PubMed  CAS  Google Scholar 

  • Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL et al (2006) Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol Appl Pharmacol 215:208–217

    PubMed  Google Scholar 

  • Salas A, Yao YG, Macaulay V et al (2005) A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2:296

    Google Scholar 

  • Sánchez-Aragó M, Cuezva JM (2011) The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. J Transl Med 9:19

    PubMed  Google Scholar 

  • Scatena R, Nocca G, Sole PD et al (1999) Bezafibrate as differentiating factor of human myeloid leukemia cells. Cell Death Differ 6:781–787

    PubMed  CAS  Google Scholar 

  • Scatena R, Bottoni P, Vincenzoni F et al (2003) Bezafibrate induces a mitochondrial derangement in human cell lines. Intriguing effects for a peroxisome proliferator. Chem Res Tox 16:1440–1447

    CAS  Google Scholar 

  • Scatena R, Bottoni P, Martorana GE et al (2007) Mitochondria, ciglitazone and liver: a neglected interaction in biochemical pharmacology. Eur J Pharmacol 567:50–58

    PubMed  CAS  Google Scholar 

  • Scatena R, Bottoni P, Pontoglio A et al (2008) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17:1533–1545

    PubMed  CAS  Google Scholar 

  • Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 4:143–158

    PubMed  CAS  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M et al (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27

    PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    PubMed  CAS  Google Scholar 

  • Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19:12–16

    PubMed  CAS  Google Scholar 

  • Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT (2011) Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl) 89:229–236

    CAS  Google Scholar 

  • Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18:598–608

    PubMed  CAS  Google Scholar 

  • Smith DF, Whitesell L, Katsanis E (1998) Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol Res 50:493–513

    CAS  Google Scholar 

  • Smolková K, Bellance N, Scandurra F et al (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55–67

    PubMed  Google Scholar 

  • Soti C, Nagy E, Giricz Z et al (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780

    PubMed  CAS  Google Scholar 

  • Sur R, Lyte PA, Southall MD (2008) Hsp27 regulates proinflammatory mediator release in keratinocytes by modulating NF-kappaB signaling. J Invest Dermatol 128:1116–1122

    PubMed  CAS  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8:1291–1297

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Christofk HR, Schuman E et al (2010) Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol 79:1118–1124

    PubMed  CAS  Google Scholar 

  • Wada T, Tanji N, Ozawa A et al (2006) Mitochondrial DNA mutations and 8-hydroxy-2′-deoxyguanosine Content in Japanese patients with urinary bladder and renal cancers. Anticancer Res 26:3403–3408

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Ryu J, Gao R et al (2010) Proproliferative functions of Drosophila small mitochondrial heat shock protein 22 in human cells. J Biol Chem 285:3833–3839

    PubMed  CAS  Google Scholar 

  • Wang XY, Chen X, Oh HJ et al (2000) Characterization of native interaction of hsp110 with hsp25 and hsc70. FEBS Lett 465:98–102

    PubMed  CAS  Google Scholar 

  • Warburg O (1925) Über den Stoffwechsel der Carcinomzelle. Klin Wochenschr 4:534–536

    CAS  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107:8788–8793

    PubMed  CAS  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    PubMed  CAS  Google Scholar 

  • Wu CW, Yin PH, Hung WY et al (2005) Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer 44:19–28

    PubMed  CAS  Google Scholar 

  • Wu M, Neilson A, Swift AL et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136

    PubMed  CAS  Google Scholar 

  • Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    PubMed  CAS  Google Scholar 

  • Yeung SJ, Pan J, Lee MH (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis – the seventh hallmark of cancer. Cell Mol Life Sci 65:3981–3999

    PubMed  CAS  Google Scholar 

  • Zhang E, Zhang C, Su Y et al (2011) Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today 16:140–146

    PubMed  CAS  Google Scholar 

  • Zhou J, Schmid T, Frank R et al (2004) PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. J Biol Chem 279:13506–13513

    PubMed  CAS  Google Scholar 

  • Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Scatena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Scatena, R. (2012). Mitochondria and Cancer: A Growing Role in Apoptosis, Cancer Cell Metabolism and Dedifferentiation. In: Scatena, R., Bottoni, P., Giardina, B. (eds) Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, vol 942. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2869-1_13

Download citation

Publish with us

Policies and ethics