Advertisement

Resection of Spinal Meningioma: Postoperative Focal Hyperemia

  • Kosei IjiriEmail author
  • Kazutoshi Hida
  • Takuya Yamamoto
  • Setsuro Komiya
  • Yoshinobu Iwasaki
Chapter
  • 1.1k Downloads
Part of the Tumors of the Central Nervous System book series (TCNS, volume 6)

Abstract

Transient postoperative focal hyperemia in the central nerve system is rare but results in unexpected neurological deterioration. The occurrence of this hyperemia after acute decompression of a chronic lesion has been reported by several authors. The pathogenesis of this sudden increase in focal blood flow remains to be elucidated; however, it is believed that this disturbance in the blood-brain barrier may be caused by acute decompression after a period of chronic compression. Postoperative hyperemia in the spinal cord is reported after the resection of meningiomas. Meningioma is a common spinal tumor, which usually becomes clinically evident with neurological dysfunction in the thoracic region. In this chapter, postoperative focal hyperemia after spinal meningioma resection is discussed with a review of relevant literature.

Keywords

Spinal Cord Cerebral Blood Volume Cervical Spondylotic Myelopathy Oxygen Extraction Fraction Postoperative Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alorainy IA (2006) Dural tail sign in spinal meningiomas. Euro J Radiol 60:387–391CrossRefGoogle Scholar
  2. Asgari S, Bassiouni H, Hunold A, Hunold A, Klassen D, Stolke D, Sandaicioglu IE (2008) Extensive brain swelling with neurological deterioration after intracranial meningioma surgery-venous complication or ‘unspecific’ increase in tissue permeability. Zentralbl Neurochir 69:22–29PubMedCrossRefGoogle Scholar
  3. Bowen BC (2008) Case review. Spine imaging, 2nd edn. Mosby, Philadelphia, pp 103–104Google Scholar
  4. Cai R, Barnett GH, Novak E, Choa ST, Suh JH (2010) Principal risk of peritumoral edema after stereotactic radiosurgery for intracranial meningioma is tumo-brain contact interface area. Neurosurgery 66:513–522PubMedCrossRefGoogle Scholar
  5. Celik SE, Celik S, Kelten B (2009) Extradural meningioma presenting with severe epistaxis: a case report and review of the literature. J Neurosurg Sci 53:27–30PubMedGoogle Scholar
  6. Frackowiak RS (1985) Pathophysiology of human cerebral ischemia: studies with positron tomography and 15 oxygen. Res Publ Assoc Res Nerv Ment Dis 63:139–161PubMedGoogle Scholar
  7. Gezen F, Kahramann S, Canakci Z, BedDük A (2000) Review of 36 cases of spinal cord meningioma. Spine 25:727–731PubMedCrossRefGoogle Scholar
  8. Gilbert JJ, Paulseth JE, Coates RK, Malott D (1983) Cerebral edema associated with meningiomas. Neurosurgery 12:599–605PubMedCrossRefGoogle Scholar
  9. Ijiri K, Hida K, Yano S, Iwasaki Y (2009) Transient focal spinal cord hyperemia after resection of spinal meningioma: case report. Neurosurgery 64:E1198–E1199PubMedCrossRefGoogle Scholar
  10. Kalfas I, Wilberger J, Goldberg A (1988) Magnetic resonance imaging in acute spinal cord trauma. Neurosurgery 23:295–299PubMedCrossRefGoogle Scholar
  11. Kondziolka D, Mathieu D, Lunsford LD, Martin JJ, Madhok R, Niranjan A, Flickinger JC (2008) Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery 62:53–58PubMedCrossRefGoogle Scholar
  12. Kuhl DE, Alavi A, Hoffman EJ, Phelps ME, Zimmerman RA, Obrist WD, Bruce DA, Greenberg JH, Uzzell B (1980) Local cerebral blood volume in head-injured patients: determination by emission computed tomography of 99mTc-labeled rec cells. J Neurosurg 52:309–320PubMedCrossRefGoogle Scholar
  13. Lee J, Koyanagi I, Hida K, Seki T, Iwasaki Y, Mitsumori K (2003) Spinal cord edema: unusual magnetic resonance imaging findings in cervical spondylosis. J Neurosurg 99(Suppl1):8–13PubMedGoogle Scholar
  14. Lee KJ, Joo W, Rha HK, Park HK, Chough JK, Hong YK, Park CK (2008) Peritumoral brain edema in meningiomas: correlations between magnetic resonance imaging, angiography, and pathology. Surg Neurol 69:350–355PubMedCrossRefGoogle Scholar
  15. Levy WJ, Bay J, Dohn D (1982) Spinal cord meningioma. J Neurosurg 57:804–812PubMedCrossRefGoogle Scholar
  16. Mahmood NS, Kadavigere AK, Ramesh AK, Rao VR (2008) Magnetic resonance imaging in acute cervical spinal cord injury: a correlative study on spinal cord changes and 1 month motor recovery. Spinal Cord 46:791–797PubMedCrossRefGoogle Scholar
  17. Mastronardi L, Elsawaf A, Roperto R, Bozzao A, Caroli M, Ferrante M, Ferrante L (2007) Prognostic relevance of the postoperative evaluation of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy. J Neurosurg Spine 7:615PubMedCrossRefGoogle Scholar
  18. Mirimannoff RO, Dosretz DE, Lingood RM, Ojemann RG, Martuza RL (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62:18–24CrossRefGoogle Scholar
  19. Nakamura M, Roser F, Michel J, Jacobs C, Samii M (2003) The natural history of incidenta meningiomas. Neurosurgery 53:62–71PubMedCrossRefGoogle Scholar
  20. Nelson JS, Parisi JE, Schocher SS (1993) Principles and practice of neuropathology. In: Parisi JE, Mena H (eds) Non-Glial tumors. Mosby-YearBook, Inc, St.Louis, pp 2003–2013Google Scholar
  21. Ogasawara K, Koshu K, Yoshimoto T, Ogawa A (1999) Transient hyperemia immediately after rapid decompression of chronic subdural hematoma. J Neurosurg 45:484–488CrossRefGoogle Scholar
  22. Ogasawara K, Ogawa A, Okuguchi T, Kobayashi M, Suzuki M, Yoshimoto T (2000) Postoperative hyperfusion syndrome in elderly patients with chronic subdural hematoma. Surg Neuro 54:155–159CrossRefGoogle Scholar
  23. Rota JJF, Meschian S, Rota AF, Urbano V, Baron M (2007) Cervical spondylotic myelopathy due to chronic compression: the role of signal intensity changes in magnetic resonance images. J Neurosurg Spine 6:17–22CrossRefGoogle Scholar
  24. Rothmann RH, Simeone FA (1992) The spine. In: Simeone FA (ed) Intradural tumors, 3rd edn. WB Saunders Co., Philadelphia, pp 1515–1517, 1299–1300Google Scholar
  25. Rutherford SA, Linton K, Durnian JM, Cowie RA (2006) Epidural meningioma of the sacral canal: case report. J Neurosurg Spine 4:71–74PubMedCrossRefGoogle Scholar
  26. Schaller B (2005) Spinal meningioma: relationship between histological subtypes and surgical outcome? J Neurooncol 75:157–161PubMedCrossRefGoogle Scholar
  27. Suri A, Chabbra RP, Mehta VA, Gaikwad S, Pandey RM (2003) Effect of intramedullary signal changes on the surgical outcome of patients with cervical spondylotic myelopathy. Spine J 3:33–45PubMedCrossRefGoogle Scholar
  28. Takahashi M, Yamashita Y, Sakamoto Y, Kojima R (1989) Chronic cervical cord compression: clinical significance if increased signal intensity on MR images. Radiology 173:219–224PubMedGoogle Scholar
  29. Tatagiba M, Mirzai S, Samii M (1991) Peritumoral blood flow in intracranial meningiomas. Neurosurgery 28:400–404PubMedCrossRefGoogle Scholar
  30. Terae S, Takahashi C, Abe S, Kikuchi Y, Miyasaki K (1997) Gd-DTPA-enhanced MR imaging of injured spinal cord. Clin Imaging 21:82–89PubMedCrossRefGoogle Scholar
  31. Young W, Kader A, Ornstein E, Baker K, Ostapkovich N, Pile-Spellmann J, Fogarty-Mack P, Stein B (1996) Cerebral hyperemia after arteriovenous malformation resection is related to “breakthrough” complication but not feeding artery pressure. J Neurosurg 38:1085–1095Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kosei Ijiri
    • 1
    Email author
  • Kazutoshi Hida
    • 1
  • Takuya Yamamoto
    • 1
  • Setsuro Komiya
    • 1
  • Yoshinobu Iwasaki
    • 1
  1. 1.Graduate School of Medical and Dental SciencesKogoshima UniversityKagoshimaJapan

Personalised recommendations