Skip to main content

More on Non Linear Relationships, Splines

  • Chapter
  • First Online:
Statistics Applied to Clinical Studies

Abstract

The general principle of regression analysis is that the best fit line/exponential-curve/curvilinear-curve etc is calculated, i.e., the one with the shortest distances to the data, and it is, subsequently, tested how far the data are from the curve. A significant correlation between the y (outcome data) and the x (exposure data) means that the data are closer to the model than will happen purely by chance. The level of significance is usually tested, simply, with t-tests or analysis of variance. The initial regression model is almost always a linear model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

In this appendix the mathematical equations of the non linear models as reviewed are given. They are, particularly, helpful for those trying to understand the assumed relationships between the dependent and independent variables, but can be disregarded by those without affection to maths (ln  =  natural logarithm).

\( \text{y}=\text{a}+{\text{b}}_{1}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10} \)

linear

\( \text{y}=\text{a}+\text{bx}+{\text{cx}}^{2}+{\text{dx}}^{3}+\dots \)

polynomial

\( \text{y}=\text{a}+\text{sinus x}+\text{cosinus x}+\dots \)

Fourier

\( \text{Ln odds}=\text{a}+{\text{b}}_{1}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10} \)

logistic

\( \text{Ln multinomial odds}=\text{a}+{\text{b}}_{1}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10} \)

multinomial logistic

\( \text{Ln hazard}=\text{a}+{\text{b}}_{1}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10} \)

Cox

\( \text{Ln rate}=\text{a}+{\text{b}}_{1}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10} \)

Poisson

Instead of ln odds (= logit) also probit (≈ πÖ3 x logit) is often used for transforming binomial data.

 

probit

\( \text{log y}=\text{a}+{\text{b}}_{1}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10} \)

logarithmic

or

\( \text{y}=\text{a}+{\text{b}}_{1}\mathrm{log}{\text{x}}_{1}+{\text{b}}_{2}{\text{x}}_{2}+\dots \dots \dots.{\text{b}}_{10}{\text{x}}_{10}\text{etc} \)

“trial and error”

transformation function of y  =  (yλ−1)/λ with λ as power parameter

Box-Cox

y  =  (transformation function−1) a  +  b1 log x1  +  b2 x 2  +  ..

ACE modeling

\( \text{y}={\text{e}}^{{\text{x}}_{1}{\text{x}}_{2}\mathrm{sin}{\text{x}}_{3}}\text{etc} \)

AVAS modeling

\( \text{y}=\text{a}+{\text{e}}^{{\text{b}}_{1}}+{\text{e}}^{{\text{b}}_{\text{2}}} \)

multi-exponential modeling

θ  =  magnitude of x-value (example)

$$ \begin{array}{l}{\theta }_{1}<\rm{x}<{\theta }_{2}\rm{y}={\rm{a}}_{1}+{\rm{b}}_{1}{\rm{x}}^{3}\rm{spline\,modeling}\\ {\theta }_{2}<\rm{x}<{\theta }_{3}\rm{y}={\rm{a}}_{2}+{\rm{b}}_{2}{\rm{x}}^{3}\\ {\theta }_{3}<\rm{x}<{\theta }_{4}\rm{y}={\rm{a}}_{3}+{\rm{b}}_{3}{\rm{x}}^{3}\end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cleophas, T.J., Zwinderman, A.H. (2012). More on Non Linear Relationships, Splines. In: Statistics Applied to Clinical Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2863-9_24

Download citation

Publish with us

Policies and ethics