Skip to main content

Biological Decontamination Using Pulsed Filamentary Microplasma Jet

  • Conference paper
  • First Online:
Plasma for Bio-Decontamination, Medicine and Food Security

Abstract

Microplasma jet for the generation of pulsed filamentary discharge at atmospheric pressure has been devised for biological decontamination as well as for modification of surface properties. Long plasma-filament is generated inside a quartz tube and characterized using optical emission spectroscopy, current voltage measurements, numerical simulations and microphotography. Efficiency of our plasma source for the decontamination on inner surface of the tube as well as on objects placed in proximity of plasma effluent is studied. Escherichia coli (Gram-negative bacteria) and spores of Bacillus atrophaeus (Gram-positive bacteria) are used for the decontamination studies. Decontamination of Bacillus atrophaeus endospores, which are layered on PET polymer material, and placed in the proximity of plasma effluent, shows the mean logarithmic bacterial reduction of 3.67 for the treatment time of 120 s. Inactivation of Escherichia coli coated on inner surface of the tube shows the mean logarithmic bacterial reduction of about 5 for the treatment time of 30 s. In addition to this, inhibition studies of bacteria coated on agar plate are also carried out. It shows plasma effluent generated in our plasma source is very effective for the inhibition of bacterial colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang X, Li M, Zhou R, Feng K, Yang S (2008) Ablation of liver cancer cells in vitro by a plasma needle. Appl Phys Lett 93:021502

    Article  ADS  Google Scholar 

  2. Uhm HS, Lim JP, Li SZ (2007) Sterilization of bacterial endospores by an atmospheric-­pressure argon plasma jet. Appl Phys Lett 90:261501

    Article  ADS  Google Scholar 

  3. Sladek REJ, Stoffels E, Walraven R, Tielbeek PJA, Koolhoven RA (2004) Plasma treatment of dental cavities: a feasibility study. IEEE Trans Plasma Sci 32:1540–1543

    Article  ADS  Google Scholar 

  4. Vargo JJ (2004) Clinical applications of the argon plasma coagulator. Gastrointest Endosc 59:81–88

    Article  Google Scholar 

  5. Nosenko T, Shimizu T, Morfill GE (2009) Designing plasmas for chronic wound disinfection. New J Phys 11:115013

    Article  Google Scholar 

  6. Laroussi M, Alexeff I, Richardson JP, Dyer FF (2002) The resistive barrier discharge. IEEE Trans Plasma Sci 30:158–159

    Article  ADS  Google Scholar 

  7. Lee MH, Park BJ, Jin SC, Kim D, Han I, Kim J, Hyun SO, Chung K-H, Park J-C (2009) Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure. New J Phys 11:115022

    Article  Google Scholar 

  8. Fridman G, Brooks AD, Balasubramanian M, Fridman A, Gutsol A, Vasilets VN, Ayan H, Friedman G (2007) Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Processes Polym 4:370–375

    Article  Google Scholar 

  9. Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316

    Article  ADS  Google Scholar 

  10. Machala Z, Chlàdekovà L, Pelach M (2010) Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D Appl Phys 43:222001

    Article  ADS  Google Scholar 

  11. Daeschlein G, Tv W, Kindel E, Brandenburg R, Weltmann K-D, Jünger M (2010) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a mimulated wound environment. Plasma Processes Polym 7:224–230

    Article  Google Scholar 

  12. Pothiraja R, Bibinov N, Awakowicz P (2010) Pulsed corona plasma source characterization for film deposition on the inner surface of tubes. J Phys D Appl Phys 43:495201

    Article  Google Scholar 

  13. Bibinov N, Halfmann H, Awakowicz P, Wiesemann K (2007) Relative and absolute intensity calibrations of a modern broadband echelle spectrometer. Meas Sci Technol 18:1327–1337

    Article  ADS  Google Scholar 

  14. Bibinov NK, Fateev AA, Wiesemann K (2001) On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures. J Phys D Appl Phys 34:1819–1826

    Article  ADS  Google Scholar 

  15. Nguyen TD, Sadeghi N (1983) Rotational and vibrational distributions of N2(C 3Πu) excited by state-selected Ar(3P2) and Ar(3P0) metastable atoms. Chem Phys 79:41–55

    Article  Google Scholar 

  16. Stefanovíc I, Bibinov NK, Deryugin AA, Vinogradov IP, Napartovich AP, Wiesemann K (2001) Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NO x and N2/O2/NO x mixtures. Plasma Sources Sci Technol 10:406–416

    Article  ADS  Google Scholar 

  17. Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35:31–53

    Article  ADS  Google Scholar 

  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1–3, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  19. Avramidis G, Stüwe B, Wascher R, Bellmann M, Wieneke S, von Tiedemann A, Viöl W (2010) Fungicidal effects of an atmospheric pressure gas discharge and degradation mechanisms. Surf CoatTechnol 205:S405–S408

    Article  Google Scholar 

  20. Binkley RW, Binkley WW (1972) Photochemical reactions of carbohydrates. Carbohydr Res 23:283–288

    Article  Google Scholar 

  21. Sobottka A, Drößler L, Lenk M, Prager L, Buchmeiser MR (2010) An open argon dielectric barrier discharge VUV-source. Plasma Processes Polym 7:650–656

    Article  Google Scholar 

  22. Seo YS, Mohamed A-AH, Woo KC, Lee HW, Lee JK, Kim KT (2010) Comparative studies of atmospheric pressure plasma characteristics between He and Ar working gases for sterilization. IEEE Trans Plasma Sci 38:2954–2962

    Article  Google Scholar 

  23. Xu G, Zhang G, Shi X, Ma Y, Wang N, Li Y (2009) Bacteria inactivation using DBD plasma jet in atmospheric pressure argon. Plasma Sci Technol 11:83–88

    Article  ADS  Google Scholar 

  24. Lim J-P, Uhma HS, Li S-Z (2007) Influence of oxygen in atmospheric-pressure argon plasma jet on sterilization of Bacillus atrophaeous spores. Phys Plasmas 14:093504

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Pothiraja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pothiraja, R., Lackmann, JW., Keil, G., Bibinov, N., Awakowicz, P. (2012). Biological Decontamination Using Pulsed Filamentary Microplasma Jet. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_4

Download citation

Publish with us

Policies and ethics