Advertisement

Prospects for Treating Foods with Cold Atmospheric Gas Plasmas

  • Gilbert Shama
  • Michael G. Kong
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

In this review the potential applications of cold atmospheric gas plasmas are presented with particular reference to the problems of contamination of foods by biological agents. In addition to the accidental contamination of food, the very real threat arising from the deliberate contamination of the human food chain is also considered. The evidence that has been gained for the efficacy of cold plasmas in inactivating a wide range of biological agents is briefly surveyed. This is followed by an examination of previous work in which ­various types of foodstuffs have been successfully treated using cold gas plasmas. The need to demonstrate that the quality attributes of treated foods is not adversely affected is stressed. Finally, the role which gas plasmas may have in decontaminating food processing equipment is considered.

Keywords

Dielectric Barrier Discharge Bovine Spongiform Encephalopathy Foodborne Pathogen Food Supply Chain Foodborne Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acheson DWK (1999) Foodborne infections. Curr Opin Gastroenterol 15:538–545CrossRefGoogle Scholar
  2. 2.
    Adak GK, Long SM, O’Brien SJ (2002) Trends in indigenous foodborne diseases and deaths, England and Wales:1992 to 2000. Gut 51:832–841CrossRefGoogle Scholar
  3. 3.
    Avramidis G, Stüwe B, Wascher R, Bellmann M, Wieneke S, von Tiedemann A, Viöl W (2010) Fungicidal effects of an atmospheric pressure gas discharge and degradation mechanisms. Surf Coat Technol 205:S405–S408CrossRefGoogle Scholar
  4. 4.
    Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25:626–632CrossRefGoogle Scholar
  5. 5.
    Bayliss DL, Walsh JL, Shama G, Iza F, Kong MG (2009) Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet. New J Phys 11, Article number: 115024Google Scholar
  6. 6.
    Birmingham JG, Hammerstrom DJ (2000) Bacterial decontamination using ambient pressure nonthermal discharges. IEEE Trans Plasma Sci 28:51–55ADSCrossRefGoogle Scholar
  7. 7.
    CDC (Centers for Disease Control) (2009) Investigation update: outbreak of Salmonella Typhimurium infections, 2008–2009. http://www.cdc.gov/salmonella/typhimurium/update.html
  8. 8.
    Critzer FJ, Kelly-Wintenberg K, South SL, Golden DA (2007) Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J Food Protection 70:2290–2296Google Scholar
  9. 9.
    den Aantrekker ED, Boom RM, Zwietering MH, van Schthorst M (2003) Quantifying recontamination through factory environments – a review. Int J Food Microbiol 80:117–130CrossRefGoogle Scholar
  10. 10.
    Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P (2007) Inactivation of Escherichia coli on almonds using nonthermal plasma. J Food Sci 72:M62–M66CrossRefGoogle Scholar
  11. 11.
    Deng XT, Shi JJ, Shama G, Kong MG (2005) Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores. Appl Phys Lett 87, Article number: 153901Google Scholar
  12. 12.
    Deng XT, Shi JJ, Kong MG (2007) Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms. J Appl Phys 101, Article number: 074701Google Scholar
  13. 13.
    Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann K-D (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44, Article number: 013002Google Scholar
  14. 14.
    Fernandez-Gutierrez SA, Pedrow PP, Pitts MJ, Powers J (2010) Cold atmospheric pressure plasmas applied to active packaging of apples. IEEE Trans Plasma Sci 38:957–965CrossRefGoogle Scholar
  15. 15.
    Fryer HR, Baylis M, Sivam K, McLean AR (2007) Quantifying the risk from ovine BSE and the impact of control strategies. Proc R Soc B 274:1497–1503CrossRefGoogle Scholar
  16. 16.
    FSA (Food Standards Agency, UK) (2005) Sudan 1 consolidated product list from February 2005 recall. http://www.food.gov.uk/safereating/chemsafe/sudani/sudanlistno. Accessed 27 Jan 2005
  17. 17.
    Heise M, Neff W, Franken O, Muranyi P, Wunderlich J (2004) Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure. Plasmas Polymers 9:23–33CrossRefGoogle Scholar
  18. 18.
    Jackson LS, Tolleson WH, Chirtel SJ (2006) Thermal inactivation of ricin using infant formula as a food matrix. J Agric Food Chem 54:7300–7304CrossRefGoogle Scholar
  19. 19.
    Kagan RS (2003) Food allergy: an overview. Environ Health Perspect 111:223–225CrossRefGoogle Scholar
  20. 20.
    Kim B, Yun H, Jung S, Jung Y, Jung H, Choe W, Jo C (2011) Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiol 28:9–13CrossRefGoogle Scholar
  21. 21.
    Lake IR, Gillespie IA, Bentham G, Nichols GL, Lane C, Adak GK, Threlfall EJ (2009) A ­re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol Infect 137:1538–1547CrossRefGoogle Scholar
  22. 22.
    Leipold F, Kusano Y, Hansen F, Jacobsen T (2010) Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas. Food Control 21:1194–1198CrossRefGoogle Scholar
  23. 23.
    Manning L, Baines RN, Chadd SA (2005) Deliberate contamination of the food supply chain. Br Food J 107:225–245CrossRefGoogle Scholar
  24. 24.
    Mead PS, Slutsker L, Dietz V, McCraig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625CrossRefGoogle Scholar
  25. 25.
    Moisan M, Barbeau J, Crevier M-C, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74:349–358CrossRefGoogle Scholar
  26. 26.
    Moon SY, Kim DB, Gweon B, Choe W, Song HP, Jo C (2009) Feasibility study of the sterilization of pork and human skin surfaces by atmospheric pressure plasmas. Thin Solid Films 517:4272–4275ADSCrossRefGoogle Scholar
  27. 27.
    Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Spromng H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H (2010) Food-borne diseases – the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S13–S15CrossRefGoogle Scholar
  28. 28.
    Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on Golden Delicious apples. J Food Prot 71:1357–1365Google Scholar
  29. 29.
    Opretzka J, Benedikt J, Awakowicz P, Wunderlich J, von Keudell A (2007) The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus. J Phys D Appl Phys 40:2826–2830ADSCrossRefGoogle Scholar
  30. 30.
    Perni S, Shama G, Hobman JL, Lund PA, Kershaw CJ, Hidalgo-Arroyo GA, Penn CW, Deng XT, Walsh JL, Kong MG (2007) Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants. Appl Phys Lett 90, Article number: 073902Google Scholar
  31. 31.
    Perni S, Liu DW, Shama G, Kong MG (2008) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot 71:302–308Google Scholar
  32. 32.
    Perni S, Shama G, Kong MG (2008) Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Prot 71:1619–1625Google Scholar
  33. 33.
    Proudy I, Bougle D, Leclercq R, Vergnaud M (2008) Tracing of Enterobacter sakazakii isolates in infant milk formula processing by BOX-PCR genotyping. J Appl Microbiol 105:550–558CrossRefGoogle Scholar
  34. 34.
    Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME, Guarnieri A (2010) Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J Food Eng 100:125–132CrossRefGoogle Scholar
  35. 35.
    Roberts C, Antonoplos P (1998) Inactivation of human immunodeficiency virus type 1, hepatitis A virus, respiratory syncytial virus, vaccinia virus, herpes simplex virus type 1, and poliovirus type 2 by hydrogen peroxide gas plasma sterilization. Am J Infect Control 26:94–101CrossRefGoogle Scholar
  36. 36.
    Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci 104:19703–19708ADSCrossRefGoogle Scholar
  37. 37.
    Sheen S, Hwang C (2008) Modeling transfer of Listeria monocytogenes from slicer to deli meat during mechanical slicing. Foodborne Pathog Dis 5:135–146CrossRefGoogle Scholar
  38. 38.
    Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67:2342–2353Google Scholar
  39. 39.
    Smith DF (2007) Food panics in history: corned beef, typhoid and “risk society”. J Epidemiol Community Health 61:566–570CrossRefGoogle Scholar
  40. 40.
    Smith JL (1993) Cryptosporidium and Giardia as agents of foodborne disease. J Food Prot 56:451–461Google Scholar
  41. 41.
    Sobel J, Khan AS, Swerdlow DL (2002) Threat of a biological terrorist attack on the US food supply: the CDC perspective. Lancet 359:874–880CrossRefGoogle Scholar
  42. 42.
    Song HP, Kim B, Choe JH, Jung S, Moon SY, Choe W, Jo C (2009) Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol 26:432–436CrossRefGoogle Scholar
  43. 43.
    Vickery K, Deva AK, Zou J, Kumaradeva P, Bissett L, Cossart YE (1999) Inactivation of duck hepatitis B virus by a hydrogen peroxide gas plasma sterilization system: laboratory and ‘in use’ testing. J Hosp Infect 41:317–322CrossRefGoogle Scholar
  44. 44.
    Vleugels M, Shama G, Deng XT, Greenacre E, Brocklehurst T, Kong MG (2005) Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Trans Plasma Sci 33:824–828ADSCrossRefGoogle Scholar
  45. 45.
    Vohrer U, Trick I, Bernhardt J, Oehr C, Brunner H (2001) Plasma treatment – an increasing technology for paper restoration? Surf Coat Technol 142:1069–1073CrossRefGoogle Scholar
  46. 46.
    Walsh C, Fanning S (2008) Antimicrobial resistance in foodborne pathogens – a cause for concern? Curr Drug Targets 9:808–815CrossRefGoogle Scholar
  47. 47.
    Wang X, Young OA, Karl DP (2010) Evaluation of cleaning procedures for allergen control in a food industry environment. J Food Sci 75:T149–T155CrossRefGoogle Scholar
  48. 48.
    Ward R, Crevel R, Bell I, Khandke N, Ramsay C, Paine S (2010) A vision for allergen management best practice in the food industry. Trends Food Sci Technol 21:619–625CrossRefGoogle Scholar
  49. 49.
    Wein LM, And Liu Y (2005) Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. PNAS 102:9984–9989ADSCrossRefGoogle Scholar
  50. 50.
    WHO (World Health Organisation) (2009) Diarrhoel disease. http://www.who.int/mediacentre/factsheets/fs330/en/index.html. Accessed 27 Jan 2009

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringLoughborough UniversityLoughborough, LeicsUK
  2. 2.Department of Electronic and Electrical EngineeringLoughborough UniversityLoughborough, LeicsUK

Personalised recommendations