Skip to main content

Generation of Focused Shock Waves in Water for Biomedical Applications

  • Conference paper
  • First Online:

Abstract

The physical characteristics of focused two-successive (tandem) shock waves (FTSW) in water and their biological effects are presented. FTSW were ­generated by underwater multichannel electrical discharges in a highly conductive saline solution using two porous ceramic-coated cylindrical electrodes of different diameter and surface area. The primary cylindrical pressure wave generated at each composite electrode was focused by a metallic parabolic reflector to a common focal point to form two strong shock waves with a variable time delay between the waves. The pressure field and interaction between the first and the second shock waves at the focus were investigated using schlieren photography and polyvinylidene fluoride (PVDF) shock gauge sensors. The largest interaction was obtained for a time delay of 8–15 μs between the waves, producing an amplitude of the negative pressure phase of the second shock wave down to −80 MPa and a large number of cavitations at the focus. The biological effects of FTSW were demonstrated in vitro on damage to B16 melanoma cells, in vivo on targeted lesions in the thigh muscles of rabbits and on the growth delay of sarcoma tumors in Lewis rats treated in vivo by FTSW, compared to untreated controls.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Proc Polym 1:91–110

    Article  Google Scholar 

  2. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 45:882–905

    Article  Google Scholar 

  3. Stalder KR, McMillen DF, Woloszko J (2005) Electrosurgical plasmas. J Phys D: Appl Phys 38:1728–1738

    Article  ADS  Google Scholar 

  4. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Proc Polym 5:503–533

    Article  Google Scholar 

  5. Dobrynin D, Fridman G, Friedman G, Friedman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020

    Article  Google Scholar 

  6. Laroussi M (2005) Low temperature plasma based sterilization: overview and state of the art. Plasma Proc Polym 2:391–400

    Article  Google Scholar 

  7. Sato M, Ohgiyama T, Clements JS (1996) Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl 32:106–112

    Article  Google Scholar 

  8. Efremov NM, Adamiak BYu, Blochin VI, Dadashev SJa, Dmitriev KI, Semjonov VN, Levashov VF, Jusbashev VF (2000) Experimental investigation of the action of pulsed electrical discharges in liquids on biological objects. IEEE Trans Plasma Sci 28:224–229

    Article  ADS  Google Scholar 

  9. Abou-Ghazala A, Katsuki S, Schoenbach KH, Dobbs FC, Moreira KR (2002) Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans Plasma Sci 30:1449–1453

    Article  ADS  Google Scholar 

  10. Ching WK, Colusi AJ, Sun HJ, Nealson KH, Hoffmann MR (2001) Escherichia coli disinfection by electrohydraulic discharges. Environ Sci Technol 35:4139–4144

    Article  Google Scholar 

  11. Robinson JW, Ham M, Balaster AN (1973) Ultraviolet radiation from electrical discharges in water. J Appl Phys 44:72–75

    Article  ADS  Google Scholar 

  12. Lukes P, Clupek M, Babicky V, Sunka P (2008) Ultraviolet radiation from pulsed corona discharge in water. Plasma Source Sci Technol 17:024012

    Article  ADS  Google Scholar 

  13. Gilliland SE, Speck ML (1967) Mechanism of the bactericidal action produced by electrohydraulic shock. Appl Microbiol 15:1038–1044

    Google Scholar 

  14. Zastawny HZ, Romat H, vel Karpel Leitner N, Chang JS (2004) Pulsed arc discharges for water treatment and disinfection. In: Electrostatics 2003. IOP Publishers, Bristol, p 325

    Google Scholar 

  15. Li Z, Sakai S, Yamada Ch, Wang D, Chung S, Lin X, Namihira T, Katsuki S, Akyiama H (2006) The effects of pulsed streamerlike discharge on cyanobacteria cells. IEEE Trans Plasma Sci 34:1719–1725

    Article  ADS  Google Scholar 

  16. Li Z, Ohno T, Sato H, Sakugawa T, Akiyama H, Kunitomo S, Sasaki K, Ayukawa M, Fujiwara H (2008) A method of water-bloom prevention using underwater pulsed streamer discharge. J Environ Sci Health A 43:1209–1214

    Article  Google Scholar 

  17. Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic fields used m extracorporeal lithotripsy. Ultrasonics 31:75–89

    Article  Google Scholar 

  18. Bailey MR, Khokhlova VA, Sapoznikov OA, Kargl SG, Crum LA (2003) Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust Phys 49:369–388

    Article  ADS  Google Scholar 

  19. Benes J, Sunka P, Kordac V, Barta Z, Stuka C, Figura Z, Jirsa M (1988) Apparatus for clinical performance of extracorporeal lithotripsy. UK Patent GB2199249

    Google Scholar 

  20. Sunka P, Babicky V, Barta Z, Benes J, Kolacek K, Kordac V, Stuka C (1990) Method and apparatus for adjusting the spark gap of a non-invasive lithotriptor. EU Patent EP0349915

    Google Scholar 

  21. Stuka C, Sunka P, Benes J (1995) New discharge circuit for efficient shock wave generation. In: Brun R, Dumitrescu LZ (eds) Shock waves @ Marseille III. Springer, Berlin/Heidelberg, pp 455–458

    Google Scholar 

  22. MEDIPO-ZT, s.r.o. (Ltd.). http://www.medipo.cz/litotryptor.htm

  23. Haupt G (1997) Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 158:4–11

    Article  Google Scholar 

  24. Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1998) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields. J Acoust Soc Am 104:2517–2524

    Article  ADS  Google Scholar 

  25. Bailey MR, Blackstock DT, Cleveland RO, Crum LA (1999) Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. J Acoust Soc Am 106:1149–1160

    Article  ADS  Google Scholar 

  26. Zhong P, Lin H, Xi X, Zhu S, Bhogte ES (1999) Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. J Acoust Soc Am 105:1997–2009

    Article  ADS  Google Scholar 

  27. Sokolov DL, Bailey MR, Crum LA (2001) Use of a dual-pulse lithotripter to generate a ­localized and intensified cavitation field. J Acoust Soc Am 110:1685–1695

    Article  ADS  Google Scholar 

  28. Sokolov DL, Bailey MR, Crum LA (2003) Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound Med Biol 29:1045–1052

    Article  Google Scholar 

  29. Huber P, Debus J, Jochle K, Simiantonakis I, Jenne J, Rastert R, Spoo J, Lorenz WJ, Wannenmache M (1999) Control of cavitation activity by different shockwave pulsing regimes. Phys Med Biol 44:1427–1437

    Article  Google Scholar 

  30. Loske AM, Prieto FE, Fernandez F, van Cauwelaert J (2002) Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys Med Biol 47:3945–3957

    Article  Google Scholar 

  31. Alvarez UM, Ramirez A, Fernandez F, Mendez A, Loske AM (2008) The influence of single-pulse and tandem shock waves on bacteria. Shock Waves 17:441–447

    Article  Google Scholar 

  32. Sunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8:2587–2594

    Article  ADS  Google Scholar 

  33. Sunka P, Babicky V, Clupek M, Benes J, Pouckova P (2004) Localized damage of tissues induced by focused shock waves. IEEE Trans Plasma Sci 32:1609–1613

    Article  ADS  Google Scholar 

  34. Sunka P, Babicky V, Clupek M, Fuciman M, Lukes P, Simek M, Benes J, Majcherova Z, Locke BR (2004) Potential applications of pulse electrical discharges in water. Acta Phys Slovaca 54:135–145

    Google Scholar 

  35. Sunka P, Stelmashuk V, Babicky V, Clupek M, Benes J, Pouckova P, Kaspar J, Bodnar M (2006) Generation of two successive shock waves focused to a common focal point. IEEE Trans Plasma Sci 34:1382–1385

    Article  ADS  Google Scholar 

  36. Lukes P, Clupek M, Babicky V, Sunka P (2008) Pulsed electrical discharge in water generated using porous ceramic coated electrodes. IEEE Trans Plasma Sci 36:1146–1147

    Article  ADS  Google Scholar 

  37. Moravkova A, Malek O, Pokorna E, Strnadel J, Hradecky J, Horak V (2005) Immune characterization of the Lewis rats inoculated with K2 sarcoma cell line and newly derived R5-28 malignant cells. Folia Biol 51:159–165

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (project No. 202/09/1151) and the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021620808). The authors would like to thank Dr. V. Horak from the Institute of Animal Physiology and Genetics AS CR for providing R5-28 malignant cells for the experiments with the Lewis rats, Dr. V. Herynek and Dr. M. Dezortova from the Institute for Clinical and Experimental Medicine, Prague, Czech Republic for the MRI analysis of the lesions in the rabbits’ thighs and Dr. J. Kralova from the Institute of Molecular Genetics AS CR for optical micrographs of the melanoma B16 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Lukeš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Lukeš, P. et al. (2012). Generation of Focused Shock Waves in Water for Biomedical Applications. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_31

Download citation

Publish with us

Policies and ethics