Skip to main content

First Achievements and Opportunities for Cancer Treatment Using Non-thermal Plasma

  • Conference paper
  • First Online:
Plasma for Bio-Decontamination, Medicine and Food Security

Abstract

This paper summarizes the experimental results and plasma delivery strategy developed in Orléans for the evaluation of antitumor action of dielectric barrier discharge and plasma gun for cancer treatment. Detailed analysis of biological effects following non thermal plasma application for both in vitro and in vivo experiments reveals the role of ROS, DNA damage induction, cell cycle modification and apoptosis induction. Recent characterization of plasma splitting and ­mixing in different capillary geometries, using the plasma gun, together with preliminary tolerance study dealing with lung and colon treatment indicate that endoscopic plasma delivery may be a new and valuable therapy in cancerology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:1–21

    Article  Google Scholar 

  2. Robert E, Barbosa E, Dozias S, Vandamme M, Cachoncinlle C, Viladrosa R, Pouvesle JM (2009) Experimental study of a compact nanosecond Plasma Gun. Plasma Process Polym 6:795–802

    Google Scholar 

  3. Vandamme M, Robert E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM (2011) Response of human glioma U87 xenografted on mice to non thermal plasma treatment. Plasma Med 1:27–43

    Article  Google Scholar 

  4. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5:503–533

    Article  Google Scholar 

  5. Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, Von dem Hagen T, Weltmann KD (2010) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:031002

    Google Scholar 

  6. Favia P (2006) Biomedical applications of plasma processes, Special issue. Plasma Process Polym 3:383

    Article  Google Scholar 

  7. Szili EJ, Al-Bataineh SA, Bryant PM, Short RD, Bradley JW, Steele DA (2011) Controlling the spatial distribution of polymer surface treatment using atmospheric-pressure microplasma jets. Plasma Process Polym 8:38–50

    Article  Google Scholar 

  8. Shu Z, Jung M, Beger HG, Marzinzig M, Han F, Butzer U, Bruckner UB, Nussler AK (1997) pH-dependent changes of nitric oxide, peroxynitrite, and reactive oxygen species in hepatocellular damage. Am J Physiol Gastrointest Liver Physiol 273:G1118–G1126

    Google Scholar 

  9. Laroussi M, Lu XP (2005) Room temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87:113902

    Article  ADS  Google Scholar 

  10. Sarron V, Robert E, Dozias S, Vandamme M, Ries D, Pouvesle JM (2011) Splitting and mixing of high velocity ionization wave sustained atmospheric pressure plasmas generated with the plasma gun. DOI 10.1109/TPS.2011.2155099, to be published in IEEE Transactions on Plasma Science, 6th Triennial Special Issue of “Images in Plasma Science”

    Google Scholar 

  11. Sarron V, Robert E, Dozias S, Ries D, Vandamme M, Pouvesle JM (2011) Propagation of two symetrical pulsed atmospheric plasma streams generated by a pulsed plasma gun. In: ISPC 20th, Philadelphia

    Google Scholar 

  12. Yan X, Zou F, Zhao S, Lu X, He G, Xiong Z, Xiong Q, Zhao Q, Deng P, Hunag J, Yang G (2010) On the mechanism of plasma inducing cell apoptosis. IEEE Trans Plasma Sci 38:2451–2457

    Article  ADS  Google Scholar 

  13. Kim GC, Bahn JH, Lee SH, Kim GY, Jun SI, Lee K, Baek SJ (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150(4):530–538

    Article  Google Scholar 

  14. Georgescu N, Lupu AR (2010) Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE Trans Plasma Sci 38(8):1949–1955

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Region Centre (APR “Plasmed”) and ANR 2010 BLAN 093003 “PAMPA” financial supports. MV is supported by Germitec, VS by Conseil Général 45, DR by CNRS and Région Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Robert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Robert, E. et al. (2012). First Achievements and Opportunities for Cancer Treatment Using Non-thermal Plasma. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_29

Download citation

Publish with us

Policies and ethics