Advertisement

First Achievements and Opportunities for Cancer Treatment Using Non-thermal Plasma

  • Eric Robert
  • Marc Vandamme
  • Julien Sobilo
  • Vanessa Sarron
  • Delphine Ries
  • Sébastien Dozias
  • Laura Brulle
  • Stéphanie Lerondel
  • Alain Le Pape
  • Jean Michel Pouvesle
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

This paper summarizes the experimental results and plasma delivery strategy developed in Orléans for the evaluation of antitumor action of dielectric barrier discharge and plasma gun for cancer treatment. Detailed analysis of biological effects following non thermal plasma application for both in vitro and in vivo experiments reveals the role of ROS, DNA damage induction, cell cycle modification and apoptosis induction. Recent characterization of plasma splitting and ­mixing in different capillary geometries, using the plasma gun, together with preliminary tolerance study dealing with lung and colon treatment indicate that endoscopic plasma delivery may be a new and valuable therapy in cancerology.

Keywords

Plasma Treatment Bioluminescence Signal Reactive Oxygen Species Release Plasma Application Cell Cycle Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the Region Centre (APR “Plasmed”) and ANR 2010 BLAN 093003 “PAMPA” financial supports. MV is supported by Germitec, VS by Conseil Général 45, DR by CNRS and Région Centre.

References

  1. 1.
    Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process 26:1–21CrossRefGoogle Scholar
  2. 2.
    Robert E, Barbosa E, Dozias S, Vandamme M, Cachoncinlle C, Viladrosa R, Pouvesle JM (2009) Experimental study of a compact nanosecond Plasma Gun. Plasma Process Polym 6:795–802Google Scholar
  3. 3.
    Vandamme M, Robert E, Dozias S, Sobilo J, Lerondel S, Le Pape A, Pouvesle JM (2011) Response of human glioma U87 xenografted on mice to non thermal plasma treatment. Plasma Med 1:27–43CrossRefGoogle Scholar
  4. 4.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5:503–533CrossRefGoogle Scholar
  5. 5.
    Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, Von dem Hagen T, Weltmann KD (2010) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:031002Google Scholar
  6. 6.
    Favia P (2006) Biomedical applications of plasma processes, Special issue. Plasma Process Polym 3:383CrossRefGoogle Scholar
  7. 7.
    Szili EJ, Al-Bataineh SA, Bryant PM, Short RD, Bradley JW, Steele DA (2011) Controlling the spatial distribution of polymer surface treatment using atmospheric-pressure microplasma jets. Plasma Process Polym 8:38–50CrossRefGoogle Scholar
  8. 8.
    Shu Z, Jung M, Beger HG, Marzinzig M, Han F, Butzer U, Bruckner UB, Nussler AK (1997) pH-dependent changes of nitric oxide, peroxynitrite, and reactive oxygen species in hepatocellular damage. Am J Physiol Gastrointest Liver Physiol 273:G1118–G1126Google Scholar
  9. 9.
    Laroussi M, Lu XP (2005) Room temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87:113902ADSCrossRefGoogle Scholar
  10. 10.
    Sarron V, Robert E, Dozias S, Vandamme M, Ries D, Pouvesle JM (2011) Splitting and mixing of high velocity ionization wave sustained atmospheric pressure plasmas generated with the plasma gun. DOI 10.1109/TPS.2011.2155099, to be published in IEEE Transactions on Plasma Science, 6th Triennial Special Issue of “Images in Plasma Science”Google Scholar
  11. 11.
    Sarron V, Robert E, Dozias S, Ries D, Vandamme M, Pouvesle JM (2011) Propagation of two symetrical pulsed atmospheric plasma streams generated by a pulsed plasma gun. In: ISPC 20th, PhiladelphiaGoogle Scholar
  12. 12.
    Yan X, Zou F, Zhao S, Lu X, He G, Xiong Z, Xiong Q, Zhao Q, Deng P, Hunag J, Yang G (2010) On the mechanism of plasma inducing cell apoptosis. IEEE Trans Plasma Sci 38:2451–2457ADSCrossRefGoogle Scholar
  13. 13.
    Kim GC, Bahn JH, Lee SH, Kim GY, Jun SI, Lee K, Baek SJ (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150(4):530–538CrossRefGoogle Scholar
  14. 14.
    Georgescu N, Lupu AR (2010) Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE Trans Plasma Sci 38(8):1949–1955ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Eric Robert
    • 1
  • Marc Vandamme
    • 1
    • 2
    • 3
  • Julien Sobilo
    • 2
  • Vanessa Sarron
    • 1
  • Delphine Ries
    • 1
  • Sébastien Dozias
    • 1
  • Laura Brulle
    • 2
  • Stéphanie Lerondel
    • 2
  • Alain Le Pape
    • 2
  • Jean Michel Pouvesle
    • 1
  1. 1.GREMICNRS-Polytech’OrléansOrléans Cedex 2France
  2. 2.TAAM-CIPACNRSOrléans Cedex 2France
  3. 3.GERMITECClichyFrance

Personalised recommendations