Skip to main content

Subcellular Biological Effects of Nanosecond Pulsed Electric Fields

  • Conference paper
  • First Online:
Plasma for Bio-Decontamination, Medicine and Food Security

Abstract

Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Catterall WA (2008) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  Google Scholar 

  2. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  Google Scholar 

  3. Pongs O (1992) Molecular biology of voltage-dependent potassium channels. Physiol Rev 72:S69–S88

    Google Scholar 

  4. Habash R, Elwood JM, Krewski D, Lotz WG, McNamee J, Prato F (2009) Recent advances in research on radiofrequency fields and health: 2004–2007. J Toxicol Environ Health B 12:250–288

    Article  Google Scholar 

  5. Simon CJ, Dupuy DE, Mayo-Smith WW (2005) Microwave ablation: principles and applications. Radiographics 25:S69–S83

    Article  Google Scholar 

  6. Vasilkoski Z, Esser A, Gowrishankar T, Weaver J (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:021904(12)

    ADS  Google Scholar 

  7. Gowrishankar TR, Weaver JC (2006) Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem Biophys Res Commun 349:643–653

    Article  Google Scholar 

  8. Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochemistry 48:3–16

    Article  Google Scholar 

  9. Teissie J, Golzio M, Rols M (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta (BBA) – General Subjects 1724:270–280

    Article  Google Scholar 

  10. Benz R, Zimmermann U (1980) Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim Biophys Acta 597:637–642

    Article  Google Scholar 

  11. Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435

    Google Scholar 

  12. Jaroszeski MJ, Gilbert R, Heller R (1997) Electrochemotherapy – an emerging drug delivery method for the treatment of cancer. Adv Drug Deliv Rev 26:185–197

    Article  Google Scholar 

  13. Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33:223–231

    Article  Google Scholar 

  14. Gothelf A (2003) Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat Rev 29:371–387

    Article  Google Scholar 

  15. Heller LC, Ugen K, Heller R (2005) Electroporation for targeted gene transfer. Expert Opin Drug Deliv 2:255–268

    Article  Google Scholar 

  16. Sersa G, Stabuc B, Cemazar M, Jancar B, Miklavčič D, Rudolf Z (1998) Electrochemotherapy with cisplatin: potentiation of local cisplatin antitumour effectiveness by application of electric pulses in cancer patients. Eur J Cancer 34:1213–1218

    Article  Google Scholar 

  17. Lucas ML, Heller R (2003) IL-12 gene therapy using an electrically mediated non-viral approach reduces metastatic growth of melanoma. DNA Cell Biol 22:755–763

    Article  Google Scholar 

  18. Forsberg EJ, Strelchenko NS, Augenstein ML, Betthauser JM, Childs LA, Eilertsen KJ et al (2002) Production of cloned cattle from in vitro systems. Biol Reprod 67:327–333

    Article  Google Scholar 

  19. Castro AJ, Barbosa-Canovas GV, Swanson BG (1993) Microbial inactivation of foods by pulsed electric fields. J Food Process Preserv 17:47–73

    Article  Google Scholar 

  20. Nguyen P, Mittal G (2007) Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials. Chem Eng Process 46:360–365

    Article  Google Scholar 

  21. Reina LD, Jin ZT, Zhang QH, Yousef AE (1998) Inactivation of Listeria monocytogenes in milk by pulsed electric field. J Food Prot 61:1203–1206

    Google Scholar 

  22. Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788

    Article  Google Scholar 

  23. Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta 148:789–800

    Article  Google Scholar 

  24. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    Google Scholar 

  25. Schoenbach KH, Peterkin FE, Alden RW, Beebe SJ (1997) The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans Plasma Sci 25:284–292

    Article  ADS  Google Scholar 

  26. Amr AG, Schoenbach KH (2000) Biofouling prevention with pulsed electric fields. IEEE Trans Plasma Sci 28:115–121

    Article  ADS  Google Scholar 

  27. Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pasushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37–52

    Article  Google Scholar 

  28. Schwan HP (1963) Electric characteristics of tissues. Biophysik 1:198–208

    Article  Google Scholar 

  29. Cole KS (1937) Electric impedance of marine egg membranes. Trans Faraday Soc 33:966–972

    Article  Google Scholar 

  30. Tien HT (1974) Bilayer lipid membrane: theory and practice. Marcel Dekker, New York

    Google Scholar 

  31. Ohki S (1969) The electrical capacitance of phospholipid membranes. Biophys J 9:1195–1205

    Article  Google Scholar 

  32. Pucihar G, Kotnik T, Valič B, Miklavčič D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng 34:642–652

    Article  Google Scholar 

  33. Pucihar G, Miklavčič D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501

    Article  Google Scholar 

  34. Gowrishankar TR (2003) An approach to electrical modeling of single and multiple cells. Proc Natl Acad Sci 100:3203–3208

    Article  ADS  Google Scholar 

  35. Gowrishankar T, Esser A, Vasilkoski Z, Smith K, Weaver J (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341:1266–1276

    Article  Google Scholar 

  36. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  Google Scholar 

  37. Joshi R, Hu Q, Schoenbach K, Beebe S (2004) Energy-landscape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 69:051901(10)

    Article  ADS  Google Scholar 

  38. Hu Q, Joshi RP (2009) Analysis of intense, subnanosecond electrical pulse-induced transmembrane voltage in spheroidal cells with arbitrary orientation. IEEE Trans Biomed Eng 56:1617–1626

    Article  ADS  Google Scholar 

  39. Hu Q, Joshi R, Schoenbach K (2005) Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys Rev E 72:031902(10)

    ADS  Google Scholar 

  40. Hu Q, Viswanadham S, Joshi R, Schoenbach K, Beebe S, Blackmore P (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914(9)

    ADS  Google Scholar 

  41. Esser AT, Smith KC, Gowrishankar TR, Weaver JC (2009) Towards solid tumor treatment by nanosecond pulsed electric fields. Technol Cancer Res Treat 8:289–306

    Google Scholar 

  42. Kolb JF (2010) Generation of ultrashort pulses. In: Pakhomov AG, Miklavčič D, Markov MS (eds) Advanced electroporation techniques in biology and medicine (biological effects of electromagnetics). CRC Press, Boca Raton, pp 341–352

    Google Scholar 

  43. Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172–187

    Article  Google Scholar 

  44. Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson RJ, Beebe S et al (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  Google Scholar 

  45. Chen X, Kolb JF, Swanson RJ, Schoenbach KH, Beebe SJ (2010) Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields. Pigment Cell Melanoma Res 23:554–563

    Article  Google Scholar 

  46. Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L et al (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121:675–682

    Article  Google Scholar 

  47. Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R et al (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  Google Scholar 

  48. De Angelis A, Kolb JF, Zeni L, Schoenbach KH (2008) Kilovolt Blumlein pulse generator with variable pulse duration and polarity. Rev Sci Instrum 9:044301(4)

    Google Scholar 

  49. Kuthi A, Gabrielsson P, Behrend MR, Vernier PT, Gundersen MA (2005) Nanosecond pulse generator using fast recovery diodes for cell electromanipulation. IEEE Trans Plasma Sci 33:1192–1197

    Article  ADS  Google Scholar 

  50. Smith K, Weaver J (2008) Active mechanisms are needed to describe cell responses to submicrosecond, megavolt-per-meter pulses: cell models for ultrashort pulses. Biophys J 95:1547–1563

    Article  Google Scholar 

  51. Marrink S, Devries A, Tieleman D (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta Biomembr 1788:149–168

    Article  Google Scholar 

  52. Bockmann R, Degroot B, Kakorin S, Neumann E, Grubmüller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837–1850

    Article  Google Scholar 

  53. Qin H, Sridhara V, Joshi RP, Kolb JF, Schoenbach KH (2006) Molecular dynamics analysis of high electric pulse effects on bilayer membranes containing DPPC and DPPS. IEEE Trans Plasma Sci 34:1405–1411

    Article  ADS  Google Scholar 

  54. Flickinger B, Berghöfer T, Hohenberger P, Eing C, Frey W (2010) Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6. Protoplasma 247:3–12

    Article  Google Scholar 

  55. Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    Article  Google Scholar 

  56. Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanosecond pulsed electric fields perturb membrane phospholipids in T lymphoblasts. FEBS Lett 572:103–108

    Article  Google Scholar 

  57. Pakhomov A, Shevin R, White J, Kolb J, Pakhomova O, Joshi R et al (2007) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    Article  Google Scholar 

  58. Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    Article  Google Scholar 

  59. Kennedy SM, Ji Z, Hedstrom JC, Booske JH, Hagness SC (2008) Quantification of electroporative uptake kinetics and electric field heterogeneity effects in cells. Biophys J 94:5018–5027

    Article  Google Scholar 

  60. Baldwin WH, Gregory BW, Osgood CJ, Schoenbach KH, Kolb JF (2010) Membrane permeability and cell survival after nanosecond pulsed electric field exposure - significance of exposure-media composition. IEEE Trans Plasma Sci 38:2948–2953

    Article  Google Scholar 

  61. Chen N, Schoenbach KH, Kolb JF, Swanson RJ, Garner AL, Yang J et al (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317:421–427

    Article  Google Scholar 

  62. Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl  +  uptake. J Membr Biol 236:15–26

    Article  Google Scholar 

  63. Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048

    Article  Google Scholar 

  64. Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico. Phys Biol 3:233–247

    Article  ADS  Google Scholar 

  65. Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  Google Scholar 

  66. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  Google Scholar 

  67. Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res/Genet Toxicol Environ Mutagen 542:65–75

    Article  Google Scholar 

  68. Stacey M, Fox PM, Buescher ES, Kolb JF (2011) Nanosecond pulsed electric field induced cytoskeleton and nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82(2):131–134

    Article  Google Scholar 

  69. Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W et al (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 387:590–595

    Article  Google Scholar 

  70. Chen N, Garner AL, Chen G, Jing Y, Deng Y, Swanson RJ et al (2007) Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Biochem Biophys Res Commun 364:220–225

    Article  Google Scholar 

  71. Hall EH, Schoenbach KH, Beebe SJ (2005) Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells. DNA Cell Biol 24:283–291

    Article  Google Scholar 

  72. Buescher ES, Schoenbach KH (2003) Effects of submicrosecond, high intensity pulsed electric fields on living cells - intracellular electromanipulation. IEEE Trans Dielect Elect Eng 10:788–794

    Article  Google Scholar 

  73. Buescher ES, Smith RR, Schoenbach KH (2004) Submicrosecond intense pulsed electric field effects on intracellular free calcium: mechanisms and effects. IEEE Trans Plasma Sci 32:1563–1572

    Article  ADS  Google Scholar 

  74. Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  Google Scholar 

  75. Craviso GL, Chatterjee P, Maalouf G, Cerjanic A, Jihwan Y, Chatterjee I et al (2009) Nanosecond electric pulse-induced increase in intracellular calcium in adrenal chromaffin cells triggers calcium-dependent catecholamine release. IEEE Trans Dielect El In 6:1294–1301

    Article  Google Scholar 

  76. White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279:22964–22972

    Article  Google Scholar 

  77. Scarlett SS, White JA, Blackmore PF, Schoenbach KH, Kolb JF (2009) Regulation of intracellular calcium concentration by nanosecond pulsed electric fields. Biochim Biophys Acta Biomembr 1788:1168–1175

    Article  Google Scholar 

  78. Beebe SJ, Fox PM, Rec LJ, Willis LK, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    Google Scholar 

  79. Ren W, Beebe SJ (2011) An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis 16:382–393

    Article  Google Scholar 

  80. Gusbeth C, Frey W, Volkmann H, Schwartz T, Bluhm H (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233

    Article  Google Scholar 

  81. Beveridge JR, MacGregor SJ, Anderson JG, Fouracre RA (2005) The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE Trans Plasma Sci 33:1287

    Article  ADS  Google Scholar 

  82. Beveridge JR, Wall K, MacGregor SJ, Anderson JG, Rowan NJ (2004) Pulsed electric field inactivation of spoilage microorganisms in alcoholic beverages. Proc IEEE 92:1138–1143

    Article  Google Scholar 

  83. Perni S, Chalise PR, Shama G, Kong MG (2007) Bacterial cells exposed to nanosecond pulsed electric fields show lethal and sublethal effects. Int J Food Microbiol 120:311–314

    Article  Google Scholar 

  84. Vernier PT, Thu MMS, Marcu L, Craft CM, Gundersen MA (2004) Nanosecond electroperturbation-mammalian cell sensitivity and bacterial spore resistance. IEEE Trans Plasma Sci 32:1620–1625

    Article  ADS  Google Scholar 

  85. Wan J, Coventry J, Swiergon P, Sanguansri P, Versteeg C (2009) Advances in innovative processing technologies for microbial inactivation and enhancement of food safety – pulsed electric field and low-temperature plasma. Trends Food Sci Technol 20:414–424

    Article  Google Scholar 

  86. Schoenbach KH, Joshi RP, Stark RH, Dobbs FC, Beebe SJ (2000) Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans Dielect El In 7:637–645

    Article  Google Scholar 

  87. Katsuki S, Moreira K, Dobbs F, Joshi RP, Schoenbach KH (2002) Bacterial decontamination with nanosecond pulsed electric fields. In: Conference record 25th IEEE international power modulator symposium and high voltage workshop, Hollywood, CA, 30 June–3 July 2002

    Google Scholar 

  88. Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093

    Article  Google Scholar 

  89. Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  Google Scholar 

  90. Coster HGL, Chilcott TC (2002) Electric field effects in proteins in membranes. Bioelectrochemistry 56:141–146

    Article  Google Scholar 

  91. Ohshima T, Tamura T, Sato M (2007) Influence of pulsed electric field on various enzyme activities. J Electrostat 65:156–161

    Article  Google Scholar 

  92. Wang S, Chen J, Chen MT, Vernier PT, Gundersen MA, Valderrábano M (2009) Cardiac myocyte excitation by ultrashort high-field pulses. Biophys J 96:1640–1648

    Article  Google Scholar 

  93. Rogers WR, Merritt JH, Comeaux JA Jr, Kuhnel CT, Moreland DF, Teltschik DG et al (2004) Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond. IEEE Trans Plasma Sci 32:1587–1599

    Article  ADS  Google Scholar 

  94. Pakhomov A, Kolb JF, Joshi RP, Schoenbach KH, Dayton T, Comeaux J et al (2006) Neuromuscular disruption with ultrashort electrical pulses. Proc SPIE 6219:621903

    Article  Google Scholar 

  95. Craviso GL, Choe S, Chatterjee P, Chatterjee I, Vernier PT (2010) Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Cell Mol Neurobiol 30:1259–1265

    Article  Google Scholar 

  96. Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe SJ, Schoenbach KH (2008) The characteristics of nanosecond pulsed electrical field stimulation on platelet aggregation in vitro. Arch Biochem Biophys 471:240–248

    Google Scholar 

  97. Schoenbach KH, Joshi RP, Kolb JF, Nianyong C, Stacey M, Blackmore PF et al (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Article  Google Scholar 

  98. Ibey BL, Pakhomov AG, Gregory BW, Khorokhorina VA, Roth CC, Rassokhin MA et al (2010) Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells. Biochim Biophys Acta – General Subjects 1800:1210–1219

    Article  Google Scholar 

  99. Hall EH, Schoenbach KH, Beebe SJ (2007) Nanosecond pulsed electric fields have differential effects on cells in the S-phase. DNA Cell Biol 26:160–171

    Article  Google Scholar 

  100. Hall EH, Schoenbach KH, Beebe SJ (2007) Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis 12:1721–1731

    Article  Google Scholar 

  101. Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP (2006) Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128:6288–6289

    Article  Google Scholar 

  102. Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37

    Article  Google Scholar 

  103. Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL et al (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445

    Article  Google Scholar 

  104. Chen X, Swanson RJ, Kolb JF, Nuccitelli R, Schoenbach KH (2009) Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment. Melanoma Res 19:361–371

    Article  Google Scholar 

  105. André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J et al (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum Gene Ther 19:1261–1272

    Article  Google Scholar 

  106. Stacey M, Osgood C, Kalluri BS, Cao W, Elsayed-Ali H, Abdel-Fattah T (2011) Nanosecond pulse electrical fields used in conjunction with multi-wall carbon nanotubes as a potential tumor treatment. Biomed Mater 6:011002

    Article  ADS  Google Scholar 

  107. Shu X, Altunc S, Kumar P, Baum CE, Schoenbach KH (2010) A reflector antenna for focusing subnanosecond pulses in the near field. IEEE Anten Wirel Propag Lett 9:12–15

    Article  ADS  Google Scholar 

  108. Schoenbach KH, Shu X, Joshi RP, Camp JT, Heeren T, Kolb JF et al (2008) The effect of intense subnanosecond electrical pulses on biological cells. IEEE Trans Plasma Sci 36:414–422

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The insight and knowledge on effects and applications of pulsed electric fields is the result of a dedicated group of researchers on this topic. I have been lucky to work with many of them at the Frank Reidy Research Center for Bioelectrics or to have found them as collaborators at Old Dominion University. Without their ideas and dedication, the field would not have advanced as it has. Credit and my thanks for the opportunity to write this summary therefore are extended to E. Stephen Buescher, Peter F. Blackmore, Michael Stacey, Stephen J. Beebe, James R. Swanson, Christopher Osgood, Ravindra P. Joshi, Shu Xiao, M. Arif Malik, Yeong-Jer Chen, Richard Heller, Loree Heller, Olga Pakhomova, Andrei Pakhomov, Barbara Hargrave, Richard Nuccitelli, Angela M. Bowman, Betsy Gregory, W. Hunter Baldwin, Jennifer Pomicter, Wolfgang Frey, Uwe Pliquett, Jue Zhang, Barbara Carroll (also for proofreading this and many other manuscripts), Ruth Lyman, many students (too many to list them all) who spent years on the actual experiments and in particular Karl H. Schoenbach for his vision and leadership in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen F. Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kolb, J.F., Stacey, M. (2012). Subcellular Biological Effects of Nanosecond Pulsed Electric Fields. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_28

Download citation

Publish with us

Policies and ethics