Skip to main content

Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing

  • Conference paper
  • First Online:

Abstract

A new field of plasma applications developed in the last years, entitled plasma medicine, has focused the attention of many peoples from plasma ­community on biology and medicine. Subjects that involve plasma physics and technology (e.g. living tissue treatment or wound healing, cancer cell apoptosis, blood coagulation, sterilization and decontamination) are nowadays in study in many laboratories. In this paper we present results on optical and electrical diagnosis of a helium ­atmospheric pressure plasma jet designed for medical use. This type of plasma jet was used for improvement of the wound healing process. We observed a more rapid macroscopic healing of the plasma treated wounds in comparison with the control group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  2. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30

    Article  ADS  Google Scholar 

  3. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5:503–533

    Article  Google Scholar 

  4. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115011

    Article  Google Scholar 

  5. Weltmann KD, Kindel E, von Woedtke T, Hahnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82:1223–1237

    Article  Google Scholar 

  6. Stoffels E, Kieft IE, Sladek REJ, van den Bedem LJM, van der Laan EP, Steinbuch M (2006) Plasma needle for in vivo medical treatment: recent developments and perspectives. Plasma Sources Sci Technol 15:S169–S180

    Article  ADS  Google Scholar 

  7. Goree J, Liu B, Drake D (2006) Gas flow dependence for plasma-needle disinfection of S. mutans bacteria. J Phys D Appl Phys 39:3479

    Article  ADS  Google Scholar 

  8. Zhang X, Li M, Zhou R, Feng K, Yang S (2008) Ablation of liver cancer cells in vitro by a plasma needle. Appl Phys Lett 93:021502

    Article  ADS  Google Scholar 

  9. Pena-Eguiluz R, Perez-Martínez JA, Solis-Pacheco J, Aguilar-Uscanga B, Lopez-Callejas R, Mercado-Cabrera A, Valencia-Alvarado R, Munoz-Castro AE, Barocio SR, de la Piedad Beneitez A (2010) Instrumentation for a plasma needle applied to E. coli bacteria elimination. Eur Phys J Appl Phys 49:13109

    Article  ADS  Google Scholar 

  10. Janca J, Zajickova L, Klima M, Slavicek P (2001) Diagnostics and application of the high frequency plasma pencil. Plasma Chem Plasma Process 21:565–579

    Article  Google Scholar 

  11. Laroussi M, Lu Xu (2005) Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87:113902

    Article  ADS  Google Scholar 

  12. Laroussi M, Hynes W, Akan T, Lu X, Tendero C (2008) The plasma pencil: a source of hypersonic cold plasma bullets for biomedical applications. IEEE Trans Plasma Sci 36:1298–1299

    Article  ADS  Google Scholar 

  13. Shashurin A, Keidar M, Bronnikov S, Jurjus RA, Stepp MA (2008) Living tissue under treatment of cold plasma atmospheric jet. Appl Phys Lett 93:181501

    Article  ADS  Google Scholar 

  14. Robert E, Barbosa E, Dozias S, Vandamme M, Cachoncinlle C, Viladrosa R, Pouvesle JM (2009) Experimental study of a compact nanosecond plasma gun. Plasma Process Polym 6:795–802

    Google Scholar 

  15. Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T (2009) Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Phys 49:631–640

    Article  ADS  Google Scholar 

  16. Xiong Q, Lu X, Ostrikov K, Xiong Z, Xian Y, Zhou F, Zou C, Hu J, Gong W, Jiang Z (2009) Length control of He atmospheric plasma jet plumes: effects of discharge parameters and ambient air. Phys Plasmas 16:043505

    Article  ADS  Google Scholar 

  17. Daeschlein G, Scholz S, Arnold A, von Woedtke T, Kindel E, Niggemeier M, Weltmann K-D, Junger M (2010) In vitro activity of atmospheric pressure plasma jet (APPJ) plasma against clinical isolates of demodex folliculorum. IEEE Trans Plasma Sci 38:2969–2973

    Article  Google Scholar 

  18. Jiang N, Ji A, Cao Z (2010) Atmospheric pressure plasma jets beyond ground electrode as charge overflow in a dielectric barrier discharge setup. J Appl Phys 108:033302

    Article  ADS  Google Scholar 

  19. Massines F, Segur P, Gherardi N, Khamphan C, Ricard A (2003) Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modeling. Surf Coat Technol 174:8–14

    Article  Google Scholar 

  20. Roth JR, Rahel J, Dai X, Sherman DM (2005) The physics and phenomenology of One Atmosphere Uniform Glow Discharge Plasma (OAUGDP™) reactors for surface treatment applications. J Phys D Appl Phys 38:555–567

    Article  ADS  Google Scholar 

  21. Liu S, Neiger M (2001) Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J Phys D Appl Phys 34:1632–1638

    Article  ADS  Google Scholar 

  22. Martens T, Brok WJM, Dijk J, Bogaerts A (2009) On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge. J Phys D Appl Phys 42:122002

    Article  ADS  Google Scholar 

  23. Urabe K, Sakai O, Tachibana K (2011) Combined spectroscopic methods for electron-density diagnostics inside atmospheric-pressure glow discharge using He/N2 gas mixture. J Phys D Appl Phys 44:115203

    Article  ADS  Google Scholar 

  24. Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J (2011) Effects of non-thermal plasma on mammalian cells. PLoS One 6:e16270

    Article  Google Scholar 

  25. Schulz-von der Gathen V, Schaper L, Knake N, Reuter S, Niemi K, Gans T, Winter J (2008) Spatially resolved diagnostics on a microscale atmospheric pressure plasma jet. J Phys D Appl Phys 41:194004

    Article  ADS  Google Scholar 

  26. Morfill GE, Shimizu T, Steffes B, Schmidt HU (2009) Nosocomial infections – a new approach towards preventive medicine using plasmas. New J Phys 11:115019

    Article  Google Scholar 

  27. Eto H, Ono Y, Ogino A, Nagatsu M (2008) Low-temperature internal sterilization of medical plastic tubes using a linear dielectric barrier discharge. Plasma Process Polym 5:269–274

    Article  Google Scholar 

  28. Moisan M, Barbeau J, Crevier MC, Pelletier J, Philip N, Saoudi B (2002) Plasma sterilization. Methods and mechanisms. Pure Appl Chem 74:349–358

    Article  Google Scholar 

  29. Halfmann H, Denis B, Bibinov N, Wunderlich J, Awakowicz P (2007) Identification of the most efficient VUV/UV radiation for plasma based inactivation of Bacillus atrophaeus spores. J Phys D Appl Phys 40:5907

    Article  ADS  Google Scholar 

  30. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F (2006) Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys 39:3494–3507

    Article  ADS  Google Scholar 

  31. Lademann J, Richter H, Alborova A, Humme D, Patzelt A, Kramer A, Weltmann KD, Hartmann B, Ottomann C, Fluhr JW, Hinz P, Hubner G, Lademann O (2009) Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt 14:054025

    Article  Google Scholar 

  32. Nosenko T, Shimizu T, Morfill GE (2009) Designing plasmas for chronic wound disinfection. New J Phys 11:115013

    Article  Google Scholar 

  33. Nastuta AV, Topala I, Grigoras C, Pohoata V, Popa G (2011) Stimulation of wound healing by helium atmospheric pressure plasma treatment. J Phys D Appl Phys 44:105204

    Article  ADS  Google Scholar 

  34. Friedman G (2010) Plasma pharmacology. In: Proceedings of the 3rd international conference for plasma medicine, Greifswald, p 18

    Google Scholar 

  35. Karakas E, Koklu M, Laroussi M (2010) Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets. J Phys D Appl Phys 43:155202

    Article  ADS  Google Scholar 

  36. Lu XP, Laroussi M (2010) Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J Appl Phys 100:063302

    Article  ADS  Google Scholar 

  37. Shi J, Zhong F, Zhang J, Liu DW, Kong MG (2008) A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet. Phys Plasmas 15:013504

    Article  ADS  Google Scholar 

  38. Walsh JL, Iza F, Janson NB, Law VJ, Kong MG (2010) Three distinct modes in a cold atmospheric pressure plasma jet. J Phys D Appl Phys 43:075201

    Article  ADS  Google Scholar 

  39. Teschke M, Kedzierski J, Finantu-Dinu EG, Korzec D, Engemann J (2005) High speed photographs of dielectric barrier atmospheric pressure plasma jet. IEEE Trans Plasma Sci 33:310–311

    Article  ADS  Google Scholar 

  40. Mericam-Bourdet N, Laroussi M, Begum A, Karakas E (2009) Experimental investigation of plasma bullets. J Phys D Appl Phys 42:055207

    Article  ADS  Google Scholar 

  41. Sakiyama Y, Graves DB, Jarrige J, Laroussi M (2010) Finite element analysis of ring-shaped emission profile in plasma bullet. Appl Phys Lett 96:041501

    Article  ADS  Google Scholar 

  42. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, Shimizu T, Sysolyatina EV, Shaginyan IA, Petrov OF, Mayevsky EI, Fortov VE, Morfill GE, Naroditsky BS, Gintsburg AL (2011) Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 60:75–83

    Article  Google Scholar 

  43. Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, Shimizu T, Karrer S (2010) Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges 8:968–976

    Google Scholar 

  44. Lloyd G, Friedman G, Jafri S, Schultz G, Fridman A, Harding K (2010) Gas plasma: medical uses and developments in wound care. Plasma Process Polym 7:194–211

    Article  Google Scholar 

  45. Heinlin J, Isbary G, Stolz W, Morfill G, Landthaler M, Shimizu T, Steffes B, Nosenko T, Zimmermann JL, Karrer S (2011) Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol 25:1–11

    Article  Google Scholar 

  46. Grigoras C, Topala I, Nastuta AV, Jitaru D, Florea I, Badescu L, Ungureanu D, Badescu M, Dumitrascu D (2011) Influence of atmospheric pressure plasma treatment on epithelial regeneration process. Rom J Phys 56:54–61

    Google Scholar 

  47. Grigoras C, Badescu L, Jitaru D, Florea I, Topala I, Dumitrascu N, Badescu M (2010) Helium plasma effects on epidermal regeneration. Ann RSCB 15:135–141

    Google Scholar 

  48. Machala Z, Jedlovsky I, Chladekova L, Pongrac B, Giertl D, Janda M, Sikurova L, Polvcic P (2009) DC discharges in atmospheric air for bio-decontamination – spectroscopic methods for mechanism identification. Eur Phys J D 54:195–204

    Article  ADS  Google Scholar 

  49. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Dr. Constantin Grigoras (Gr.T. Popa University of Medicine and Pharmacy, Iasi, Romania) for its valuable help in wound healing experiments and for the fruitfull discussions.

This work was supported by CNCSIS-UEFISCSU, grant PN II-RU 297/2010-2011 and ESF in Romania, grant POSDRU/89/1.5/S/63663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionut Topala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Topala, I., Nastuta, A. (2012). Helium Atmospheric Pressure Plasma Jet: Diagnostics and Application for Burned Wounds Healing. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_26

Download citation

Publish with us

Policies and ethics