Optical Emission Spectroscopic Evaluation of Different Microwave Plasma Discharges and Its Potential Application for Sterilization Processes

  • José L. HuesoEmail author
  • Víctor J. Rico
  • Ángel Yanguas-Gil
  • José Cotrino
  • Agustín R. González-Elipe
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


The present work aims at studying different microwave flowing discharges containing Ar and/or NO as alternative candidates to more extended N2 containing plasma mixtures like N2-O2. Optical Emission Spectroscopy (OES) is used to demonstrate the potential possibilities of these plasma mixtures to provide O* and UV intermediate species demanded for sterilization purposes at low temperatures and extended discharge gaps. Additionally, some plasma sterilization experiments with Escherichia coli cultures are presented.


Plasma Discharge Optical Emission Spectroscopy Sterilization Process Excitation Temperature Plasma Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Processes Polym 5(6):503–533CrossRefGoogle Scholar
  2. 2.
    Boudam MK, Moisan M (2010) Synergy effect of heat and UV photons on bacterial-spore inactivation in an N-2-O-2 plasma-afterglow sterilizer. J Phys D Appl Phys 43(29):295202CrossRefGoogle Scholar
  3. 3.
    Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes Polym 2(5):391–400CrossRefGoogle Scholar
  4. 4.
    Moisan M, Barbeau J, Pelletier J (2001) Plasma sterilization – methods and mechanisms. Vide-Sci Tech Et Appl 56(299):15–28Google Scholar
  5. 5.
    Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226(1–2):1–21CrossRefGoogle Scholar
  6. 6.
    Rossi F, Kylian O, Rauscher H, Hasiwa M, Gilliland D (2009) Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J Phys 11:115017CrossRefGoogle Scholar
  7. 7.
    Machala Z, Janda M, Hensel K, Jedlovsky I, Lestinska L, Foltin V, Martisovits V, Morvova M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243(2):194–201ADSCrossRefGoogle Scholar
  8. 8.
    Moreau S, Moisan M, Tabrizian M, Barbeau J, Pelletier J, Ricard A, Yahia L (2000) Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: influence of the operating conditions. J Appl Phys 88(2):1166–1174ADSCrossRefGoogle Scholar
  9. 9.
    Chau TT, Kao KC, Blank G, Madrid F (1996) Microwave plasmas for low-temperature dry sterilization. Biomaterials 17(13):1273–1277CrossRefGoogle Scholar
  10. 10.
    Sato T, Miyahara T, Doi A, Ochiai S, Urayama T, Nakatani T (2006) Sterilization ­mechanism for Escherichia coli by plasma flow at atmospheric pressure. Appl Phys Lett 89(7):073902ADSCrossRefGoogle Scholar
  11. 11.
    Hueso JL, Rico VJ, Frias JE, Cotrino J, Gonzalez-Elipe AR (2008) Ar+NO microwave plasmas for Escherichia coli sterilization. J Phys D Appl Phys 41(9):092002ADSCrossRefGoogle Scholar
  12. 12.
    Ricard A (2005) Optical spectroscopy on processing plasmas: cathode magnetron sputtering and flowing post-discharges for elastomer activation and medical sterilization. Thin Solid Films 475(1–2):1–5ADSCrossRefGoogle Scholar
  13. 13.
    Moreau M, Orange N, Brisset JL (2005) Application of electric discharges at atmospheric pressure and ambient temperature for bio-decontamination. Ozone-Sci Eng 27(6):469–473CrossRefGoogle Scholar
  14. 14.
    Kylian O, Rossi F (2009) Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O-2/N-2 ternary mixture. J Phys D Appl Phys 42(8):085207ADSCrossRefGoogle Scholar
  15. 15.
    Villeger S, Sarrette JP, Ricard A (2005) Synergy between N and O atom action and substrate surface temperature in a sterilization process using a flowing N-2-O-2 microwave post discharge. Plasma Processes Polym 2(9):709–714CrossRefGoogle Scholar
  16. 16.
    Dobrynin D, Arjunan K, Fridman A, Friedman G, Clyne AM (2010) Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma. J Phys D Appl Phys 44(7):075201ADSCrossRefGoogle Scholar
  17. 17.
    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115020CrossRefGoogle Scholar
  18. 18.
    Stapelmann K, Kylian O, Denis B, Rossi F (2008) On the application of inductively coupled plasma discharges sustained in Ar/O-2/N-2 ternary mixture for sterilization and decontamination of medical instruments. J Phys D Appl Phys 41(19):192005ADSCrossRefGoogle Scholar
  19. 19.
    Pearse RWB, Gaydon AG (1976) The identification of molecular spectra. Chapman & Hall, New YorkCrossRefGoogle Scholar
  20. 20.
    Hueso JL, Gonzalez-Flipe AR, Cotrino J, Caballero A (2005) Plasma chemistry of NO in complex gas mixtures excited with a surfatron launcher. J Phys Chem A 109(22):4930–4938CrossRefGoogle Scholar
  21. 21.
    Hueso JL, Gonzalez-Elipe AR, Cotrino J, Caballero A (2007) Removal of NO in NO/N-2, NO/N-2/O-2, NO/CH4/N-2, and NO/CH4/O-2/N-2 systems by flowing microwave discharges. J Phys Chem A 111(6):1057–1065CrossRefGoogle Scholar
  22. 22.
    Yanguas-Gil A, Cotrino J, Alves LL (2005) An update of argon inelastic cross sections for plasma discharges. J Phys D: Appl Phys 38(10):1588–1598ADSCrossRefGoogle Scholar
  23. 23.
    Yanguas-Gil A, Cotrino J, Gonzalez-Elipe AR (2004) Collisional radiative model of an argon atmospheric capillary surface-wave discharge. Phys Plasmas 11(12):5497–5506ADSCrossRefGoogle Scholar
  24. 24.
    Dulaney JL, Biondi MA, Johnsen R (1987) Electron-temperature dependence of the recombination of electrons with No+ ions. Phys Rev A 36(3):1342–1350ADSCrossRefGoogle Scholar
  25. 25.
    Iordanova E (2010) Poly-diagnostic validation of spectroscopic methods: in-depth monitoring of microwave induced plasmas. PhD Thesis, Eindhoven University of Technology, The NetherlandsGoogle Scholar
  26. 26.
    Jimenez-Diaz M (2010) Modelling of microwave induced plasmas: the interplay between ­electromagnetism, plasma chemistry and transport. PhD Thesis, Eindhoven University of Technology, The NetherlandsGoogle Scholar
  27. 27.
    Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F (2006) Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys 39(16):3494–3507ADSCrossRefGoogle Scholar
  28. 28.
    Philip N, Saoudi B, Crevier MC, Moisan M, Barbeau J, Pelletier J (2002) The respective roles of UV photons and oxygen atoms in plasma sterilization at reduced gas pressure: the case of N-2-O-2 mixtures. IEEE Trans Plasma Sci 30(4):1429–1436ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • José L. Hueso
    • 1
    • 2
    • 3
    Email author
  • Víctor J. Rico
    • 1
    • 2
    • 3
  • Ángel Yanguas-Gil
    • 1
    • 2
    • 3
    • 4
  • José Cotrino
    • 1
    • 2
    • 3
  • Agustín R. González-Elipe
    • 1
    • 2
    • 3
  1. 1.Instituto de Ciencia de Materiales de SevillaSevillaSpain
  2. 2.Departamento de Química InorgánicaCSIC-University of SevillaSevillaSpain
  3. 3.Departamento de Física AtómicaMolecular y Nuclear de la Universidad de SevillaSevillaSpain
  4. 4.Argonne National LaboratoryArgonneUSA

Personalised recommendations