Skip to main content

Discovery: Computational Systems Biology (CSB) in Health and Disease I

  • Chapter
  • First Online:
Systems Biology in Biotech & Pharma

Part of the book series: SpringerBriefs in Pharmaceutical Science & Drug Development ((BRIEFSPSDD,volume 2))

  • 1065 Accesses

Abstract

To date, few cellular and gene networks have been reconstructed and analyzed in full. Examples include some prokaryotes and few eukaryotes for cellular networks. The methods currently used to analyze single database genomic sets are usually mature and refined. Network reconstruction is also enabled by analysing the molecular connectivity of a system by using correlation analysis. Additionally, monitoring the dynamics of the system and measuring the system’s responses to perturbations such as drug administration or challenge tests can yield insights into the dynamics of the system. Microbial cells are fairly well characterized, but the status of similar efforts for mammalian cells is rather poor. While emergence can be conveniently studied via computational tools, the phenomenon of emergence is the single most important benefit of CSB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonon G (2008) From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. Future Oncol 4(4):569–577

    Article  PubMed  CAS  Google Scholar 

  2. Pe’er D, Hacohen N (2011) Principles and strategies for developing network models in cancer. Cell 144(6):864–873

    Article  PubMed  Google Scholar 

  3. Camacho D, Vera Licona P, Mendes P, Laubenbacher R (2007) Comparison of reverse-engineering methods using an in silico network. Ann N Y Acad Sci 1115:73–89

    Article  PubMed  Google Scholar 

  4. Lee NH (2005) Genomic approaches for reconstructing gene networks. Pharmacogenomics 6(3):245–258

    Article  PubMed  CAS  Google Scholar 

  5. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  PubMed  CAS  Google Scholar 

  6. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein–protein interaction. Proc Natl Acad Sci U S A 101(16):5934–5939

    Article  PubMed  CAS  Google Scholar 

  7. Nikolsky Y, Nikolskaya T, Bugrim A (2005) Biological networks and analysis of experimental data in drug discovery. Drug Discov Today 10(9):653–662

    Article  PubMed  CAS  Google Scholar 

  8. Cary MP, Bader GD, Sander C (2005) Pathway information for systems biology. FEBS Lett 579(8):1815–1820

    Article  PubMed  CAS  Google Scholar 

  9. Xiong H, Choe Y (2008) Structural systems identification of genetic regulatory networks. Bioinformatics 24(4):553–560

    Article  PubMed  CAS  Google Scholar 

  10. Kim CS (2007) Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks. BMC Bioinf 13(8):251

    Article  Google Scholar 

  11. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Barton HA (2005) Computational pharmacokinetics during developmental windows of susceptibility. J Toxicol Environ Health A 68(11–12):889–900

    Google Scholar 

  12. Ramoni MF, Sebastiani P, Kohane IS (2002) Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A 99(14):9121–9126

    Article  PubMed  CAS  Google Scholar 

  13. Schliep A, Schönhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(Suppl 1):i255–i263

    Article  PubMed  Google Scholar 

  14. Chen T, He HL, Church GM (1999) Modeling gene expression with differential equations. Pac Symp Biocomput 29–40

    Google Scholar 

  15. Kim SY, Imoto S, Miyano S (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4(3):228–235

    Article  PubMed  CAS  Google Scholar 

  16. Holter NS, Maritan A, Cieplak M, Fedoroff NV, Banavar JR (2001) Dynamic modeling of gene expression data. Proc Natl Acad Sci U S A 98(4):1693–1698

    Article  PubMed  CAS  Google Scholar 

  17. Ernst J, Vainas O, Harbison CT, Simon I, Bar-Joseph Z (2007) Reconstructing dynamic regulatory maps. Mol Syst Biol 3:74

    Article  PubMed  Google Scholar 

  18. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  PubMed  CAS  Google Scholar 

  19. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37(4):382–390

    Article  PubMed  CAS  Google Scholar 

  20. Altay G, Emmert-Streib F (2010) Inferring the conservative causal core of gene regulatory networks. BMC Syst Biol 28(4):132

    Article  Google Scholar 

  21. Wang K, Saito M, Bisikirska BC, Alvarez MJ, Lim WK, Rajbhandari P, Shen Q, Nemenman I, Basso K, Margolin AA, Klein U, Dalla-Favera R, Califano A (2009) Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol. 27(9):829–39

    Article  PubMed  CAS  Google Scholar 

  22. Lou XY, Chen GB, Yan L et al (2008) A combinatorial approach to detecting gene–gene and gene-environment interactions in family studies. Amer J Human Genet 83(4):457–467

    Article  CAS  Google Scholar 

  23. Yang Y, Adelstein SJ, Kassis AI (2009) Target discovery from data mining approaches. Drug Discov Today 14(3–4):147–154

    Article  PubMed  Google Scholar 

  24. Michelson S and Schofield T (1996) The biostatistics cookbook: The most user-friendly guide for the bio/Medical Scientist, Kluwer

    Google Scholar 

  25. Csilléry K, Blum MG, Gaggiotti OE, François O (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25(7):410–8

    Article  PubMed  Google Scholar 

  26. Tripathi A, Klami A, Kaski S (2008) Simple integrative preprocessing preserves what is shared in data sources. BMC Bioinf 9:111

    Article  Google Scholar 

  27. Lee GW, Kim S (2008) Genome data mining for everyone. BMB Rep 41(11):757–764

    Article  PubMed  CAS  Google Scholar 

  28. van der Greef J (2005) Systems biology, connectivity and the future of medicine. Syst Biol (Stevenage) 152(4):174–178

    Google Scholar 

  29. Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71(1):1–11

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, Zhang R, Song Y, He J, Sun J, Bai J, An Z, Dong L, Zhan Q, Abliz Z (2009) RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst 134(10):2003–2011

    Article  PubMed  CAS  Google Scholar 

  31. van der Greef J, Martin S, Juhasz P, Adourian A, Plasterer T, Verheij ER, McBurney RN (2007) The art and practice of systems biology in medicine: mapping patterns of relationships. J Proteome Res 6(4):1540–1559

    Article  PubMed  Google Scholar 

  32. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24(7):805–815

    Article  PubMed  CAS  Google Scholar 

  33. Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C (2008) Activation of fungal silent gene clusters: a new avenue to drug discovery. Prog Drug Res 66(1):3–12

    Google Scholar 

  34. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 108(15):6258–63

    Article  PubMed  CAS  Google Scholar 

  35. Lomberk G, Urrutia R (2008) Primers on molecular pathways–notch. Pancreatology 8(2):103–104

    Article  PubMed  CAS  Google Scholar 

  36. Kel A, Voss N, Valeev T, Stegmaier P, Kel-Margoulis O, Wingender E (2008) ExPlain, finding upstream drug targets in disease gene regulatory networks. SAR QSAR Environ Res 19(5–6):481–494

    Article  PubMed  CAS  Google Scholar 

  37. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690

    Article  PubMed  CAS  Google Scholar 

  38. del Sol A, Balling R, Hood L, Galas D (2010) Diseases as network perturbations. Curr Opin Biotechnol 21(4):566–571

    Article  PubMed  CAS  Google Scholar 

  39. Faratian D, Goltsov A, Lebedeva G, Sorokin A, Moodie S, Mullen P, Kay C, Um IH, Langdon S, Goryanin I, Harrison DJ (2009) Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 69(16):6713–6720

    Article  PubMed  CAS  Google Scholar 

  40. Ashkenazi R, Gentry SN, Jackson TL (2008) Pathways to tumorigenesis–modeling mutation acquisition in stem cells and their progeny. Neoplasia 10(11):1170–1182

    PubMed  CAS  Google Scholar 

  41. Emre N, Coleman R, Ding S (2007) A chemical approach to stem cell biology. Curr Opin Chem Biol 11(3):252–258

    Article  PubMed  CAS  Google Scholar 

  42. Schugar RC, Robbins PD, Deasy BM (2008) Small molecules in stem cell self-renewal and differentiation. Gene Ther 15(2):126–135

    Article  PubMed  CAS  Google Scholar 

  43. Fang YQ, Wong WQ, Yap YW, Orner BP (2007) Stem cells and combinatorial science. Comb Chem High Throughput Screen 10(8):635–651

    Article  PubMed  CAS  Google Scholar 

  44. Nelson T, Behfar A, Terzic A (2008) Stem cells: biologics for regeneration. Clin Pharmacol Ther 84(5):620–623

    Article  PubMed  CAS  Google Scholar 

  45. Davies PCW (2004) Emergent biological principles and computational properties of the Universe. Complexity 10:11–15

    Article  Google Scholar 

  46. Fromm J (2005) Types and forms of emergence. http://arxiv.org/abs/nlin.AO/0506028 (June 13)

  47. Buchanan M (2006) Nexus. The Groundbreaking Science of Networks. Norton WW, New York 2nd edition

    Google Scholar 

  48. Richards K, Bithell M, Dove M, Hodge R (2004) Discrete-element modelling: methods and applications in the environmental sciences. Philos Transact A Math Phys Eng Sci 362(1822):1797–1816

    Article  PubMed  Google Scholar 

  49. Rasmussen S, Baas NA, Mayer B, Nilsson M (2001) Defense of the ansatz for dynamical hierarchies. Artif Life 7(4):367–373

    Article  PubMed  CAS  Google Scholar 

  50. Marsh AG, Zeng Y, Garcia-Frias J (2005) The expansion of information in ecological systems: Emergence as a quantifiable state. Ecol Inf 1:107–116

    Article  Google Scholar 

  51. Papin JA, Palsson BO (2004) Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J Theor Biol 227(2):283–297

    Article  PubMed  Google Scholar 

  52. Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22(10):1253–1259

    Article  PubMed  CAS  Google Scholar 

  53. Ahmed E, Hashish AH (2006) On modelling the immune system as a complex system. Theor Biosci 124(3–4):13–18

    Google Scholar 

  54. Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64

    Article  PubMed  Google Scholar 

  55. Wikswo JP, Prokop A, Baudenbacher F, Cliffel D, Csukas B, Velkovsky M (2008) Engineering challenges of BioNEMS: the integration of microfluidics, micro- and nanodevices, models and external control for systems biology. IEE Proc Nanobiotechnol 153(4):81–101

    Article  Google Scholar 

  56. Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50

    Article  PubMed  CAS  Google Scholar 

  57. Christopher R, Dhiman A, Fox J, Gendelman R, Haberitcher T, Kagle D, Spizz G, Khalil IG, Hill C (2004) Data-driven computer simulation of human cancer cell. Ann N Y Acad Sci 1020:132–153

    Article  PubMed  CAS  Google Scholar 

  58. Bonneau R (2008) Learning biological networks: from modules to dynamics. Nat Chem Biol 4(11):658–664

    Article  PubMed  CAS  Google Scholar 

  59. Gianchandani EP, Oberhardt MA, Burgard AP, Maranas CD, Papin JA (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinf 9:43

    Article  Google Scholar 

  60. Dasika MS, Burgard A, Maranas CD (2008) A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys J 91(1):382–398

    Article  Google Scholar 

  61. Morel NM, Holland JM, van der Greef J, Marple EW, Clish C, Loscalzo J, Naylor S (2004) Primer on medical genomics. Part XIV: Introduction to systems biology—a new approach to understanding disease and treatment. Mayo Clin Proc 79(5):651–658

    Article  PubMed  CAS  Google Scholar 

  62. Yan L, Karatsoreos I, Lesauter J, Welsh DK, Kay S, Foley D, Silver R (2007) Exploring spatiotemporal organization of SCN circuits. Cold Spring Harb Symp Quant Biol 72:527–541

    Article  PubMed  CAS  Google Scholar 

  63. Nikolsky Y, Ekins S, Nikolskaya T, Bugrim A (2005) A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol Lett 158(1):20–29

    Article  PubMed  CAS  Google Scholar 

  64. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br J Pharmacol 152(1):9–20

    Article  PubMed  CAS  Google Scholar 

  65. Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T (2007) Pathway mapping tools for analysis of high content data. Methods Mol Biol 356:319–350

    PubMed  CAS  Google Scholar 

  66. Plaimas K, Mallm JP, Oswald M, Svara F, Sourjik V, Eils R, König R (2008) Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst Biol 24(2):67

    Article  Google Scholar 

  67. Jamshidi N, Palsson BØ (2008) Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput Biol 4(9):e1000177

    Article  PubMed  Google Scholar 

  68. Liu G, Neelamegham S (2008) In silico biochemical reaction network analysis (IBRENA): a package for simulation and analysis of reaction networks. Bioinformatics 24(8):1109–11

    Article  PubMed  CAS  Google Scholar 

  69. Abdi A, Tahoori MB, Emamian ES (2008) Fault diagnosis engineering of digital circuits can identify vulnerable molecules in complex cellular pathways. Sci Signal 1(42):10

    Article  Google Scholar 

  70. Araujo RP, Petricoin EF, Liotta LA (2005) A mathematical model of combination therapy using the EGFR signaling network. Biosystems 80(1):57–69

    Article  PubMed  CAS  Google Scholar 

  71. Vilar JM, Jansen R, Sander C (2006) Signal processing in the TGF-beta superfamily ligand-receptor network. PLoS Comput Biol 2(1):e3

    Article  PubMed  Google Scholar 

  72. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R (2006) A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol 8(6):571–580

    Article  PubMed  CAS  Google Scholar 

  73. Li L, Yu M, Jason RD, Shen C, Azzouz F, McLeod HL, Borges-Gonzales S, Nguyen A, Skaar T, Desta Z, Sweeney CJ, Flockhart DA (2008) A mixture model approach in gene-gene and gene-environmental interactions for binary phenotypes. J Biopharm Stat 18(6):1150–1177

    Article  PubMed  CAS  Google Scholar 

  74. Ruths DA, Nakhleh L, Iyengar MS, Reddy SA, Ram PT (2006) Hypothesis generation in signaling networks. J Comput Biol 13(9):1546–1557

    Article  PubMed  CAS  Google Scholar 

  75. Ananiadou S, Kell DB, Tsujii J (2006) Text mining and its potential applications in systems biology. Trends Biotechnol 24(12):571–579

    Article  PubMed  CAS  Google Scholar 

  76. Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Prokop .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Prokop, A., Michelson, S. (2012). Discovery: Computational Systems Biology (CSB) in Health and Disease I. In: Systems Biology in Biotech & Pharma. SpringerBriefs in Pharmaceutical Science & Drug Development, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2849-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2849-3_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2848-6

  • Online ISBN: 978-94-007-2849-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics