Skip to main content

Integrative Systems Biology I—Biochemistry: Phase I Lead Discovery and Molecular Interactions

  • Chapter
  • First Online:
Systems Biology in Biotech & Pharma

Part of the book series: SpringerBriefs in Pharmaceutical Science & Drug Development ((BRIEFSPSDD,volume 2))

  • 1059 Accesses

Abstract

This chapter represents a mix of reductionist and holistic tools. Molecular screens and Biomimetics represent advanced reductionist approaches—the former are well established in the industry, although still developing. Similarly, the collateral efficacy/permissive antagonism concept may add to this effort, possibly generating new targets. Solving different co-drugging modalities represents a typical SB approach. Likewise, text mining does add to the holistic (global) effort. Tools to analyze biochemical networks and the phenomenon of emergence may lead to the establishment of ‘new biology’ or computational systems biology (CSB). Reactome analysis and bioinformatics tools only reinforce this effort. The level of development of the above quantitative tools is not uniform: some are advanced and mature (e.g., molecular screens), some require more inputs and are undergoing rapid evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Villoutreix BO, Renault N, Lagorce D, Sperandio O, Montes M, Miteva MA (2007) Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 8(4):381–411

    Article  PubMed  CAS  Google Scholar 

  2. Seifert MH, Lang M (2008) Essential factors for successful virtual screening. Mini Rev Med Chem 8(1):63–72

    Article  PubMed  CAS  Google Scholar 

  3. Stoermer MJ (2006) Current status of virtual screening as analysed by target class. Med Chem 2(1):89–112

    Article  PubMed  CAS  Google Scholar 

  4. Zheng XF, Chan TF (2002) Chemical genomics: a systematic approach in biological research and drug discovery. Curr Issues Mol Biol 4(2):33–43

    PubMed  CAS  Google Scholar 

  5. Fox T, Kriegl JM (2006) Machine learning techniques for in silico modeling of drug metabolism. Curr Top Med Chem 6(15):1579–1591

    Article  PubMed  CAS  Google Scholar 

  6. Zal T (2008) Visualization of protein interactions in living cells. Adv Exp Med Biol 640:183–197

    Article  PubMed  CAS  Google Scholar 

  7. Huang N, Kalyanaraman C, Bernacki K, Jacobson MP (2006) Molecular mechanics methods for predicting protein-ligand binding. Phys Chem Chem Phys 8(44):5166–5177

    Article  PubMed  CAS  Google Scholar 

  8. Marco E, Gago F (2007) Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations. Chem Med Chem 2(10):1388–1401

    PubMed  CAS  Google Scholar 

  9. Lushington GH, Guo JX, Wang JL (2007) Whither combine? New opportunities for receptor-based QSAR. Curr Med Chem 14(17):1863–1877

    Article  PubMed  CAS  Google Scholar 

  10. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18(2):178–184

    Article  PubMed  CAS  Google Scholar 

  11. Mancera RL (2007) Molecular modeling of hydration in drug design. Curr Opin Drug Discov Devel 10(3):275–280

    PubMed  CAS  Google Scholar 

  12. Vagner J, Qu H, Hruby VJ (2008) Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 12(3):292–296

    Article  PubMed  CAS  Google Scholar 

  13. Tamerler C, Sarikaya M (2007) Molecular biomimetics: utilizing nature’s molecular ways in practical engineering. Acta Biomater 3(3):289–299

    Article  PubMed  CAS  Google Scholar 

  14. Robinson JA, Demarco S, Gombert F, Moehle K, Obrecht D (2008) The design, structures and therapeutic potential of protein epitope mimetics. Drug Discov Today 13(21–22):944–951

    Article  PubMed  CAS  Google Scholar 

  15. Galandrin S, Oligny-Longpré G, Bouvier M (2007) The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 28(8):423–430

    Article  PubMed  CAS  Google Scholar 

  16. Kenakin T (2007) Allosteric agonist modulators. J Recept Signal Transduct Res 27(4):247–259

    Article  PubMed  CAS  Google Scholar 

  17. Langmead CJ (2007) Screening for positive allosteric modulators: assessment of modulator: assessment of modulator concentration-response curves as a screening paradigm. J Biomol Screen 12(5):668–676

    Article  PubMed  CAS  Google Scholar 

  18. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK (2006) Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2(9):458–466

    Article  PubMed  CAS  Google Scholar 

  19. Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9(15):641–651

    Article  PubMed  CAS  Google Scholar 

  20. Dancey JE, Chen HX (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat Rev Drug Discov 5(8):649-59.

    Article  PubMed  CAS  Google Scholar 

  21. Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6(3):202–210

    Article  PubMed  CAS  Google Scholar 

  22. Truco E (1965) Mathematical models for cellular systems: the Von Foerster equation. Part I Bull Math Biophys 27:283–303

    Google Scholar 

  23. Rubinow SI (1968) A Maturity-Time Representation for Cell Populations. Biophys J 8:1055–1073

    Article  PubMed  CAS  Google Scholar 

  24. Leith JT, Faulkner LE, Bliven SF, Michelson S (1988) Compositional stability of artificial heterogeneous tumors in vivo: use of mitomycin C as a cytotoxic probe. Cancer Res 48(10):2669–2673

    PubMed  CAS  Google Scholar 

  25. Sarić J, Engelken H, Reyle U (2008) Discovering biomedical knowledge from the literature. Methods Mol Biol 484:415–433

    Article  PubMed  Google Scholar 

  26. Altman RB, Bergman CM, Blake J, Blaschke C, Cohen A, Gannon F, Grivell L, Hahn U, Hersh W, Hirschman L, Jensen LJ, Krallinger M, Mons B, O’Donoghue SI, Peitsch MC, Rebholz-Schuhmann D, Shatkay H, Valencia A (2008) Text mining for biology–the way forward: opinions from leading scientists. Genome Biol 9(Suppl 2):S7

    Google Scholar 

  27. Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representation in metabolic pathways. In: Hunter L et al (eds) Proceedings first international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, pp 328–336

    Google Scholar 

  28. Brutlag DL (1989) Expert system simulations as active learning environments. In: Colwell RR (ed) Biomolecular data: a resource in transition. First CODATA Workshop on nucleic acid and protein sequencing data, Gaithersburg, MD, 1987, 367pp. Oxford University Press, New York, Oxford, pp 185–188

    Google Scholar 

  29. Stoffers HJ, Sonnhammer EL, Blommestijn GJ, Raat NJ, Westerhoff HV (1992) METASIM: object-oriented modelling of cell regulation. Comput Appl Biosci 8(5):443–449

    PubMed  CAS  Google Scholar 

  30. Collado-Vides J (1991) A syntactic representation of units of genetic information—a syntax of units of genetic information. J Theor Biol 148:401–429

    Article  PubMed  CAS  Google Scholar 

  31. Crampin EJ, Schnell S, McSharry PE (2004) Mathematical and computational techniques to reduce complex biochemical reaction mechanisms. Progr Biophys Molec Biol 86:77–112

    Article  CAS  Google Scholar 

  32. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  PubMed  CAS  Google Scholar 

  33. Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309:1868–1871

    Article  PubMed  CAS  Google Scholar 

  34. Ricard J (2004) Reduction, integration and emergence in biochemical networks. Biol Cell 96(9):719–725

    Article  PubMed  CAS  Google Scholar 

  35. Snoep JL (2005) The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr Opin Biotechnol 16(3):336–343

    Article  PubMed  CAS  Google Scholar 

  36. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005(1):2005.0010. [Epub 25 May 2005]

    Google Scholar 

  37. Bonarius HPJ, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308–314

    Article  CAS  Google Scholar 

  38. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  39. Hornberg JJ, Bruggeman FJ, Binder B, Geest CR, de Vaate AJ, Lankelma J, Heinrich R, Westerhoff HV (2005) Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J 272:244–258

    Article  PubMed  CAS  Google Scholar 

  40. Kümmel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinf 7:512

    Article  Google Scholar 

  41. Bosl WJ (2007) Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Syst Biol 15(1):13

    Article  Google Scholar 

  42. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucl Acid Res 37(Database issue):D619–22

    Google Scholar 

  43. van Gend C, Snoep JL (2008) Systems biology model databases and resources. Essays Biochem 45:223–236

    Article  PubMed  Google Scholar 

  44. Phillips KA, Van Bebber S, Issa AM (2006) Diagnostics and biomaker development: priming the pipeline. Nat Rev Drug Discov 5(6):463–469

    Article  PubMed  CAS  Google Scholar 

  45. Suderman M, Hallett M (2007) Tools for visually exploring biological networks. Bioinformatics 23(20):2651–2659

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Prokop .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Prokop, A., Michelson, S. (2012). Integrative Systems Biology I—Biochemistry: Phase I Lead Discovery and Molecular Interactions. In: Systems Biology in Biotech & Pharma. SpringerBriefs in Pharmaceutical Science & Drug Development, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2849-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2849-3_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2848-6

  • Online ISBN: 978-94-007-2849-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics