Skip to main content

Smooth Muscle Cell Differentiation from Embryonic Stem Cells: Role of HDAC7 and PDGF-BB

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 4

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 4))

  • 1136 Accesses

Abstract

Circulating stem cells and resident vascular progenitor cells have been implicated in the pathogenesis of atherosclerotic disease. Stem cells have been found to accumulate in the neointima of atherosclerotic lesions where they differentiate into smooth muscle cells (SMCs). Furthermore, these SMCs in atherosclerotic lesions will undergo phenotype switch from differentiated to a synthetic phenotype. These synthetic smooth muscle cells increase the size of the atherosclerotic lesion by proliferation and the formation of extracellular matrix. Although the source of these stem/progenitor cells remains controversial, for example, whether or not bone marrow-derived stem cells can differentiate into smooth muscle cells in the atherosclerotic lesion, the differentiation of stem cells to SMCs is certainly important in atherosclerotic disease. A study suggests that platelet derived growth factor BB (PDGF-BB) regulates the expression of histone deacetylase 7 (HDAC7) through enhancing the transcription factor specificity protein 1’s (Sp1) binding to the HDAC7 promoter, which in turn promotes SMC differentiation from stem cells. In this review, we will summarise the updated data in SMC differentiation, stem/progenitor cells and cardiovascular diseases. Particularly, we focus on the importance of PDGF-BB and HDAC7 signal pathways in SMC differentiation from stem cells and cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334

    Article  PubMed  CAS  Google Scholar 

  • Davis FJ, Gupta M, Camoretti-Mercado B, Schwartz RJ, Gupta MP (2003) Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem 278:20047–20058

    Article  PubMed  CAS  Google Scholar 

  • Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE (2001) A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 276:17007–17013

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E (2001) Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 276:35826–35835

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57

    Article  PubMed  CAS  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  • Hodawadekar SC, Marmorstein R (2007) Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26:5528–5540

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Mayr M, Metzler B, Erdel M, Davison F, Xu Q (2002) Both donor and recipient origins of smooth muscle cells in vein graft atherosclerotic lesions. Circ Res 91:e13–e20

    Article  PubMed  Google Scholar 

  • Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113:1258–1265

    PubMed  CAS  Google Scholar 

  • Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C (2011) Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 129:29–49

    Article  PubMed  CAS  Google Scholar 

  • Kao HY, Verdel A, Tsai CC, Simon C, Juguilon H, Khochbin S (2001) Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem 276:47496–47507

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69

    Article  PubMed  CAS  Google Scholar 

  • Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfi A, Koch U, De Francesco R, Steinkühler C, Gallinari P (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA 104:17335–17340

    Article  PubMed  CAS  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574

    PubMed  CAS  Google Scholar 

  • Margariti A, Xiao Q, Zampetaki A, Zhang Z, Li H, Martin D, Hu Y, Zeng L, Xu Q (2009) Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells. J Cell Sci 122:460–470

    Article  PubMed  CAS  Google Scholar 

  • Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, Kazi MN, Ruiz FR, Pu WT, Tallquist MD (2008) Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res 103:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M, Michaelis UR, Fleming I, Suhan T, Cinatl J, Blaheta RA, Hoffmann K, Kotchetkov R, Busse R, Nau H, Cinatl J Jr (2004) Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol 65:520–527

    Article  PubMed  CAS  Google Scholar 

  • Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  • Rossig L, Li H, Fisslthaler B, Urbich C, Fleming I, Forstermann U, Zeiher AM, Dimmeler S (2002) Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 91:837–844

    Article  PubMed  Google Scholar 

  • Rossig L, Urbich C, Bruhl T, Dernbach E, Heeschen C, Chavakis E, Sasaki K, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S (2005) Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 201:1825–1835

    Article  PubMed  Google Scholar 

  • Smith CL, Baek ST, Sung CY, Tallquist MD (2011) Epicardial-derived cell epithelial to mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 108(12):e15–26

    Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  PubMed  CAS  Google Scholar 

  • Torsney E, Xu Q (2011) Resident vascular progenitor cells. J Mol Cell Cardiol 50:304–311

    Article  PubMed  CAS  Google Scholar 

  • Torsney E, Mandal K, Halliday A, Jahangiri M, Xu Q (2007) Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis 191:259–264

    Article  PubMed  CAS  Google Scholar 

  • Wamhoff BR, Hoofnagle MH, Burns A, Sinha S, McDonald OG, Owens GK (2004) A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res 95:981–988

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Zeng L, Zhang Z, Margariti A, Ali ZA, Channon KM, Xu Q, Hu Y (2006) Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol 26:2244–2251

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Zeng L, Zhang Z, Hu Y, Xu Q (2007) Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin alpha1/beta1/alphav and PDGF receptor pathways. Am J Physiol Cell Physiol 292:C342–C352

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Wang G, Luo Z, Xu Q (2010) The mechanism of stem cell differentiation into smooth muscle cells. Thromb Haemost 104:440–448

    Article  PubMed  CAS  Google Scholar 

  • Xu Q (2008) Stem cells and transplant arteriosclerosis. Circ Res 102:1011–1024

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Xiao Q, Margariti A, Zhang Z, Zampetaki A, Patel S, Capogrossi MC, Hu Y, Xu Q (2006) HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol 174:1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Jin M, Margariti A, Wang G, Luo Z, Zampetaki A, Zeng L, Ye S, Zhu J, Xiao Q (2010) Sp1-dependent activation of HDAC7 is required for platelet-derived growth factor-BB-induced smooth muscle cell differentiation from stem cells. J Biol Chem 285:38463–38472

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Margariti A, Zeng L, Xu Q (2011) Role of histone deacetylases in vascular cell homeostasis and arteriosclerosis. Cardiovasc Res 90:413–420

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhong Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sims, D., Xiao, Q. (2012). Smooth Muscle Cell Differentiation from Embryonic Stem Cells: Role of HDAC7 and PDGF-BB. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 4. Stem Cells and Cancer Stem Cells, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2828-8_7

Download citation

Publish with us

Policies and ethics