Skip to main content

The Cancer Stem Cell Hypothesis and Its Impact on the Design of New Cancer Therapies

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 4))

Abstract

During the past decade, the cancer stem cell hypothesis has been the subject of considerable debate. The cancer stem cell hypothesis posits that many tumors possess only a small fraction of “stem” cells endowed with an unlimited capacity to proliferate. According to the hypothesis, it is these cells, and not the remaining cells in the tumor, that are responsible for continued growth of the tumor and, ultimately, the death of the patient. The seminal studies of Kleinsmith and Pierce nearly 50 years ago, together with more the recent studies of leukemia and solid tumors, have provided compelling evidence that many tumors possess only a minor population of tumor-initiating cells. However, concerns have been raised about the methods used to estimate the number of tumor-initiating cells present in a tumor. These, and other concerns, have led many to question whether tumors actually contain only a minor fraction of tumor-initiating cells. This chapter reviews some of the evidence for, and the challenges to, the cancer stem cell hypothesis. It also discusses three questions related to the biology of cancer stem cells that should be considered when designing new cancer therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson K, Lutz C, van Delft F, Bateman C, Guo Y, Colman S, Kempski H, Moorman A, Titley I, Swansbury J, Kearney L, Enver T, Greaves M (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361

    Article  PubMed  CAS  Google Scholar 

  • Askanazy M (1907) Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich Zum experimentellen Teratoid. Verhandl Deutsch Pathol 11:39–82

    Google Scholar 

  • Bateman C, Colman S, Chaplin T, Young B, Eden T, Bhakta M, Gratias E, van Wering E, Cazzaniga G, Harrison C, Hain R, Ancliff P, Ford A, Kearney L, Greaves M (2010) Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 115:3553–3558

    Article  PubMed  CAS  Google Scholar 

  • Blazek E, Foutch J, Maki G (2007) Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133-cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 67:1–5

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick J (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Borovski T, Melo F, Vermeulen L, Medema J (2011) Cancer stem cell niche: the place to be. Cancer Res 71:634–639

    Article  PubMed  CAS  Google Scholar 

  • Brinster R (1976) Participation of teratocarcinoma cells in mouse embryo development. Cancer Res 36:3412–3414

    PubMed  CAS  Google Scholar 

  • Calvi L, Adams G, Weibrecht K, Weber J, Olson D, Knight M, Martin R, Schipani E, Divieti P, Bringhurst F, Milner L, Kronenberg H, Scadden D (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Rizzino A (2010) Induced pluripotent stem cells: what lies beyond the paradigm shift. Exp Biol Med (Maywood) 235:148–158

    Article  CAS  Google Scholar 

  • Dewey M, Martin D Jr, Martin G, Mintz B (1977) Mosaic mice with teratocarcinoma-derived mutant cells deficient in hypoxanthine phosphoribosyltransferase. Proc Natl Acad Sci USA 74:5564–5568

    Article  PubMed  CAS  Google Scholar 

  • Fibach E, Sachs L (1975) Control of normal differentiation of myeloid leukemic cells; VIII. Induction of differentiation to mature granulocytes in mass culture. J Cell Physiol 86:221–230

    Article  PubMed  CAS  Google Scholar 

  • Hart I, Fidler I (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40:2281–2287

    PubMed  CAS  Google Scholar 

  • Jamieson C, Ailles L, Dylla S, Muijtjens M, Jones C, Zehnder J, Gotlib J, Li K, Manz M, Keating A, Sawyers C, Weissman I (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  PubMed  CAS  Google Scholar 

  • Joo K, Kim S, Jin X, Song S, Kong D, Lee J, Jeon J, Kim M, Kang B, Jung Y, Jin J, Hong S, Park W, Lee D, Kim H, Nam D (2008) Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest 88:808–815

    Article  PubMed  CAS  Google Scholar 

  • Kleinsmith L, Pierce G Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    PubMed  CAS  Google Scholar 

  • Lane S, Scadden D, Gilliland D (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008) Cutaneous cancer stem cell maintenance is dependent on beta-catenin signaling. Nature 452:650–653

    Article  PubMed  CAS  Google Scholar 

  • Mullighan C, Phillips L, Su X, Ma J, Miller C, Shurtleff S, Downing J (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Notta F, Mullighan C, Wang J, Poeppl A, Doulatov S, Phillips L, Ma J, Minden M, Downing J, Dick J (2011) Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 469:362–367

    Article  PubMed  CAS  Google Scholar 

  • Nowell P (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  • Pierce G, Shikes R, Fink L (1978) Origin of neoplastic stem cells. In: Cancer: a problem of developmental biology. Prentice-Hall, Inc, New Jersey, pp 68–84

    Google Scholar 

  • Quintana E, Shackleton M, Sabel M, Fullen D, Johnson T, Morrison S (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  PubMed  CAS  Google Scholar 

  • Sengupta A, Cancelas J (2010) Cancer stem cells: a stride towards cancer cure? J Cell Physiol 225:7–14

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, Henkelman R, Cusimano M, Dirks P (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Stevens L Jr, Little C (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci USA 40:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  • Vaillant F, Asselin-Labat M, Shackleton M, Forrest N, Lindeman G, Visvader J (2008) The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68:7711–7717

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen L, Melo F, van der Heijden M, Cameron K, de Jong J, Borovski T, Tuynman J, Todaro M, Merz C, Rodermond H, Sprick M, Kemper K, Richel D, Stassi G, Medema J (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  • Vyas P, Jacobsen S (2011) Clever leukemic stem cells branch out. Cell Stem Cell 8:242–244

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa J, Wilhelm J, Zheng Y, Cancelas J, Gu Y, Jansen M, Dimartino J, Mulloy J (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Like others who are attempting to move cancer biology forward step by step, the author of this chapter is strongly aware of being perched on the shoulder of giants who laid the foundation for our current understanding of cancer. In this regard, many of the basic concepts put forward in this chapter have been heavily influenced by the work of Barry Pierce, and our conversations over the years. Similarly, Tim McKeithan is thanked for his comments on this chapter and for our frequent conversations over the past 5 years, which helped focus and challenge my views of cancer biology. Jesse Cox is thanked for the design and drawing of the figures and reading this chapter. Heather Rizzino is thanked for editorial comments. Finally, work in the author’s laboratory is funded by grants from NIH (GM 080751) and the Nebraska Department of Health (2011-29; Stem Cell 2009-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angie Rizzino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rizzino, A. (2012). The Cancer Stem Cell Hypothesis and Its Impact on the Design of New Cancer Therapies. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 4. Stem Cells and Cancer Stem Cells, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2828-8_21

Download citation

Publish with us

Policies and ethics