Skip to main content

Cellularized Scaffolds: New Clothes for Cardiac Regenerative Medicine

  • Chapter
  • First Online:
  • 1137 Accesses

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 4))

Abstract

Current practice of medical therapy and mechanical revascularization may stabilize symptoms post-myocardial infarction, but they do not address fundamental issue of significant loss of contractile units of cardiac muscle. Patients devastated by massive infarction and adverse remodeling of left ventricle (LV) require drastic remedies to avert dire consequences of congestive heart failure. Currently, mechanical circulatory supporting devices such as left ventricular assist device (LVAD) and biventricular assist device (BiVAD) are being offered as an acceptable bridging measure until heart transplant, but are plaqued by technical issues and high costs of such interventions. Tissue engineered cardiac construct is being considered as an alternative bridging measure for such patients. These constructs are often reconstituted by natural matrices or synthesis polymers to serve as scaffolding carriers for repopulating stem cells. These cellularized scaffolds serve to restrain LV dilatation from adverse remodeling and support weakened myocardial wall in post-infarcted heart. The scaffolds have been designed to biodegrade over a period of time and tuned to adapt to varying mechanical property to impart elasticity and mechanical strength that match the milieu requirements of failing heart. In this chapter, we focus on the types of scaffolds that are being considered as most appropriate for clinical adoption. Their implications in the context of cellular carrier and vascular conduits for cardiac regenerative medicine are emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akhyari P, Fedak PWM, Weisel RD, Lee TYJ, Verma S, Mickle DAG, Li RK (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106:I137–I142

    Article  PubMed  Google Scholar 

  • Alperin C, Zandstra PW, Woodhouse KA (2005) Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 26:7377–7386

    Article  PubMed  CAS  Google Scholar 

  • Au HTH, Cheng I, Chowdhury MF, Radisic M (2007) Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes. Biomaterials 28:4277–4293

    Article  PubMed  CAS  Google Scholar 

  • Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95:1261–1269

    PubMed  Google Scholar 

  • Batista RJ, Santos JL, Takeshita N, Bocchino L, Lima PN, Cunha MA (1996) Partial left ventriculectomy to improve left ventricular function in end-stage heart disease. J Card Surg 11:96–97

    Article  PubMed  CAS  Google Scholar 

  • Bel A, Planat-Bernard V, Saito A, Bonnevie L, Bellamy V, Sabbah L, Bellabas L, Brinon B, Vanneaux V, Pradeau P, Peyrard S, Larghero J, Pouly J, Binder P, Garcia S, Shimizu T, Sawa Y, Okano T, Bruneval P, Desnos M, Hagège AA, Casteilla L, Pucéat M, Menasché P (2010) Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122:S118–S123

    Article  PubMed  Google Scholar 

  • Bhana B, Iyer RK, Chen WL, Zhao R, Sider KL, Likhitpanichkul M, Simmons CA, Radisic M (2010) Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 105:1148–1160

    PubMed  CAS  Google Scholar 

  • Callegari A, Bollini S, Iop L, Chiavegato A, Torregrossa G, Pozzobon M, Gerosa G, De Coppi P, Elvassore N, Sartore S (2007) Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts. Biomaterials 28:5449–5461

    Article  PubMed  CAS  Google Scholar 

  • Carpentier A, Chachques JC (1985) Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet 325:1267

    Article  Google Scholar 

  • Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A (2008) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85:901–908

    Article  PubMed  Google Scholar 

  • Chen WL, Simmons CA (2011) Lessons from (patho)physiological tissue stiffness and their implications for drug screening, drug delivery and regenerative medicine. Adv Drug Deliv Rev 63(4–5):269–276. http://www.sciencedirect.com/science/article/pii/S0169409X11000081

    Article  PubMed  CAS  Google Scholar 

  • Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Strook AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6:908–915

    Article  PubMed  CAS  Google Scholar 

  • Dor V, Di Donato M, Sabatier M, Montiglio F, Civaia F, RESTORE Group (2001) Left ventricular reconstruction by endoventricular circular patch plasty repair: a 17-year experience. Semin Thorac Cardiovasc Surg 13:435–447

    PubMed  CAS  Google Scholar 

  • Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166:877–887

    Article  PubMed  CAS  Google Scholar 

  • Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S (2006) Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 98:705–712

    Article  PubMed  CAS  Google Scholar 

  • Gaudette GR, Cohen IS (2006) Cardiac regeneration: materials can improve the passive properties of myocardium, but cell therapy must do more. Circulation 114:2575–2577

    Article  PubMed  Google Scholar 

  • Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, Yoo KJ, Putnam AJ, Kim BS (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29:844–856

    Article  PubMed  CAS  Google Scholar 

  • Hansen A, Eder A, Bönstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B, Schwörer A, Uebeler J, Eschenhagen T (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107:35–44

    Article  PubMed  CAS  Google Scholar 

  • Hecker L, Khait L, Radnoti D, Birla R (2008) Development of a microperfusion system for the culture of bioengineered heart muscle. ASIAO J 54:284–294

    Article  Google Scholar 

  • Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Jeong SI, Shin YM, Lim KS, Shin H, Lee YM, Koh HC, Kim KS (2009) Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infraction model. Eur J Heart Fail 11:147–153

    Article  PubMed  CAS  Google Scholar 

  • Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK (2001) Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 104:2063–2068

    Article  PubMed  CAS  Google Scholar 

  • Kofidis T, Akhyari P, Wachsmann B, Boublik J, Mueller-Stahl K, Leyh R, Fischer S, Haverich A (2002) A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur J Cardiothorac Surg 22:238–243

    Article  PubMed  Google Scholar 

  • Kofidis T, De Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP, Quertermous T, Robbins RC (2004) Injectable bioartificial myocardial tissue for large-scale intramural cell transfer and functional recovery of injured heart muscle. J Thorac Cardiovasc Surg 128:571–578

    PubMed  Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2010) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 103(Suppl 3):III56–III61

    Google Scholar 

  • Lionetti V, Cantoni S, Cavallini C, Bianchi F, Valente S, Frascari I, Olivi E, Aquaro GD, Bonavita F, Scarlata I, Maioli M, Vaccari V, Tassinari R, Bartoli A, Recchia FA, Pasquinelli G, Ventura C (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem 285:9949–9961

    Article  PubMed  CAS  Google Scholar 

  • Morritt AN, Bortolotto SK, Dilley RJ, Han X, Kompa AR, McCombe D, Wright CE, Itescu S, Angus JA, Morrison WA (2007) Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115:353–360

    Article  PubMed  Google Scholar 

  • Orlic D, Hill JM, Arai AE (2002) Stem cells for myocardial regeneration. Circ Res 91:1092–1102

    Article  PubMed  CAS  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  PubMed  CAS  Google Scholar 

  • Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE (2001) Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol 280:H168–H178

    PubMed  CAS  Google Scholar 

  • Potapova IA, Doronin SV, Kelly DJ, Rosen AB, Schuldt AJT, Lu Z, Kochupura PV, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS (2008) Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage. Am J Physiol Heart Circ Physiol 295:H2257–H2263

    Article  PubMed  CAS  Google Scholar 

  • Robinson KA, Li J, Mathison M, Redkar A, Cui J, Chronos NA, Matheny RG, Badylak SF (2005) Extracellular matrix scaffold for cardiac repair. Circulation 112(9 Suppl):I135–I143

    PubMed  Google Scholar 

  • Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295:1037–1044

    Article  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40–e48

    Article  PubMed  CAS  Google Scholar 

  • Starling RC, Jessup M, Oh JK, Sabbah HN, Acker MA, Mann DL, Kubo SH (2007) Sustained benefits of the CorCap cardiac support device on left ventricular remodeling: three year follow-up results from the Acorn clinical trial. Ann Thorac Surg 84:1236–1242

    Article  PubMed  Google Scholar 

  • Stevens KR, Kreutziger KL, Dupras SK, Korte FS, Regnier M, Muskheli V, Nourse MB, Bendixen K, Reinecke H, Murry CE (2009) Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA 106:16568–16573

    Article  PubMed  CAS  Google Scholar 

  • Tan G, Shim W, Gu Y, Qian L, Chung YY, Lim SY, Yong P, Sim E, Wong P (2010) Differential effect of myocardial matrix and integrins on cardiac differentiation of human mesenchymal stem cells. Differentiation 79:260–271

    Article  PubMed  CAS  Google Scholar 

  • Velazquez EJ, Lee KL, O’Connor CM, Oh JK, Bonow RO, Pohost GM, Feldman AM, Mark DB, Panza JA, Sopko G, Rouleau JL, Jones RH, STICH Investigators (2007) The rationale and design of the surgical treatment for ischemic heart failure (STICH) trial. J Thorac Cardiovasc Surg 134:1540–1547

    Article  PubMed  Google Scholar 

  • Yildirim Y, Naito H, Didie M, Karikkineth BC, Biermann D, Eschenhagen T, Zimmermann WH (2007) Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116(Suppl 11):I16–I23

    PubMed  Google Scholar 

  • Zimmermann WH, Didié M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T (2002) Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106(Suppl 1):I151–I157

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston Shim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lim, K.P., Qian, L., Wong, P., Shim, W. (2012). Cellularized Scaffolds: New Clothes for Cardiac Regenerative Medicine. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 4. Stem Cells and Cancer Stem Cells, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2828-8_15

Download citation

Publish with us

Policies and ethics