Skip to main content

Fifth Problem Area: Complexity and Non-Linearity

  • Chapter
  • First Online:
System Theory in Geomorphology

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the preceding chapter we discussed that those systems which we generally observe in geomorphology cannot be regarded as systems in equilibrium. This is the case, because geomorphic systems are centres of flow, growth, and change—they are neither static, nor still, nor ‘dead’ (cf. [1, p. xii]). Thus, they are not in equilibrium. Non-linear systems are the norm, not the exception. With increasing results, which contradicted the equilibrium concept, this insight lead to an approach oriented towards non-linearity in the 1990s. When a non-linear approach is applied, every cause can become an effect and every effect can become a cause [2, p. 113], and a system’s equilibrium cannot be established. This insight thus was already communicated 40 years ago, but has, however, not been successfully distributed within the prevalent paradigm.

The biggest finder still is a blind man in all the richness of the world

Christian Morgenstern

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is not clear, however, whether these equilibria are geomorphic or thermodynamic, with the latter being a reception of Ilya Prigogine’s approach to dissipative structures. To my knowledge, these differences—between geomorphic and thermodynamic equilibria—have never been assessed.

  2. 2.

    In contrast to self-organisation, self-regulation always stays within the stable band of a system (cf. [18, p. 72]).

References

  1. Schneider ED, Sagan D (2005) Into the cool. Energy flow, thermodynamics, and life. The University of Chicago Press, Chicago, p 362

    Google Scholar 

  2. Schumm SA, Lichty RW (1965) Time, space, and causality in geomorphology. Am J Sci 263:110–119 February

    Article  Google Scholar 

  3. Hergarten S (2003) Landslides, sandpiles, and self-organized criticality. Nat Hazards Earth Syst Sci 3(3):505–514

    Google Scholar 

  4. Phillips JD (1992) The end of equilibrium? Geomorphology 5(3–5):195–201

    Article  Google Scholar 

  5. Phillips JD (1999) Divergence, convergence, and self-organization in landscapes. Ann Assoc Am Geogr 89(3):466–488

    Article  Google Scholar 

  6. Phillips JD (2006) Deterministic chaos and historical geomorphology: a review and look forward. Geomorphology 76:109–121

    Article  Google Scholar 

  7. Phillips JD (2006) Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change. Hydrol Earth Syst Sci 10:731–742

    Article  Google Scholar 

  8. Schumm SA (1991) To interpret the earth. Ten ways to be wrong. Cambridge University Press, Cambridge

    Google Scholar 

  9. Thomas MF (2001) Landscape sensitivity in time and space—an introduction. Catena 42(2–4):83–98

    Article  Google Scholar 

  10. Malanson GP, Butler DR, Georgakakos KP (1992) Nonequilibrium geomorphic processes and deterministic chaos. Geomorphology 5:311–322

    Article  Google Scholar 

  11. Mayer L (1992) Some comments on equilibrium concepts and geomorphic systems. Geomorphology 5:277–295

    Article  Google Scholar 

  12. Renwick WH (1992) Equilibrium, disequilibrium, and nonequilibrium landforms in the landscape. Geomorphology 5:265–276

    Article  Google Scholar 

  13. Sack D (1992): New wine in old bottles: the historiography of a paradigm change. Geomorphology, 5:251–263

    Google Scholar 

  14. Phillips JD (2009) Changes, perturbations, and responses in geomorphic systems. Prog Phys Geogr 33(1):17–30

    Article  Google Scholar 

  15. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. Wiley, New York, p 491

    Google Scholar 

  16. Baas ACW (2007) Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology 48(1–3):309–328

    Google Scholar 

  17. Lane SN, Richards KS (1997) Linking river channel form and process: time, space and causality revisited. Earth Surf Proc Land 22(3):249–260

    Article  Google Scholar 

  18. Prigogine I, Stengers I (1990) Entwicklung und Irreversibilität. In: Niedersen U, Pohlmann L (ed) Selbstorganisation und Determination. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 3–18

    Google Scholar 

  19. Harrison S (2001) On reductionism and emergence in geomorphology. Trans Inst British Geographers 26(3):327–339

    Article  Google Scholar 

  20. Phillips JD (1999) Earth surface systems: complexity, order and scale. Blackwell, Oxford, p 180

    Google Scholar 

  21. Phillips JD (2003) Sources of nonlinearity and complexity in geomorphic systems. Prog Phys Geogr 27(1):1–23

    Article  Google Scholar 

  22. Dikau R (2006) Komplexe Systeme in der Geomorphologie. Mitteilungen der Österreichischen Geographischen Gesellschaft 148:125–150

    Google Scholar 

  23. Murray B, Fonstad MA (2007) Preface: complexity (and simplicity) in landscapes. Geomorphology 91:173–177

    Article  Google Scholar 

  24. Schumm SA (1979) Geomorphic thresholds. The concept and its applications. Trans Inst British Geographers 4(4):485–515

    Article  Google Scholar 

  25. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59:381–384

    Article  Google Scholar 

  26. Bak P (1996) How nature works. The science of self-organised criticality. Copernicus Press, New York, p 212

    Google Scholar 

  27. Merino E, Wang Y (2000) Geochemical self-organization in rocks: Occurrences, oberservations, modeling, testing–with emphasis on Agate genesis. In: Krug H-J, Kruhl J H (ed), Nichtgleichgewichtsprozesse und dissipative Strukturen in den Geowissenschaften. Non-equilibrium processes and dissipative structures in geoscience. Selbstorganisation. Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften. Duncker and Humblot, Berlin, pp 13–46

    Google Scholar 

  28. Prigogine I (1967) Introduction to thermodynamics of irreversible processes. Interscience, New York, p 147

    Google Scholar 

  29. Prigogine I (1985) Vom Sein zum Werden. Zeit und Komplexität in den Naturwissenschaften. Piper, München, p 304

    Google Scholar 

  30. Prigogine I, Stengers I (1980) Einleitung: Die Herausforderung an die Wissenschaft. In: Prigogine I, Stengers I (ed) Dialog mit der Natur, München, pp 9–30

    Google Scholar 

  31. Chin A (2006) Urban transformation of river landscapes in a global context. Geomorphology 79:460–487

    Article  Google Scholar 

  32. Dearing JA, Zolitschka B (1999) System dynamics and environmental change: an exploratory study of Holocene lake sediments at Holzmaar, Germany. The Holocene 9(5):531–540

    Article  Google Scholar 

  33. Grams PE, Schmidt JC (2005) Equilibrium or indeterminante? Where sediment budgets fail: sediment mass balance and adjustment of channel form, Green River downstream from flaming Gorge Dam, Utah and Colorado. Geomorphology 71:156–181

    Article  Google Scholar 

  34. Petts GE, Gurnell AM (2005) Dams and geomorphology: research progress and future directions. Geomorphology 71:27–47

    Article  Google Scholar 

  35. Tucker GE (2009) ESEX commentary: natural experiments in landscape evolution. Earth Surf Proc Land 34:1450–1460

    Article  Google Scholar 

  36. Wang Z-Y, Wu B, Wang G (2007) Fluvial processes and morphological response in the Yellow and Weihe Rivers to closure and operation of Sanmenxia Dam. Geomorphology 91:65–79

    Article  Google Scholar 

  37. von Elverfeldt K, Keiler M (2008) Offene Systeme und ihre Umwelt–Systemperspektiven in der Geomorphologie. In: Egner H, Ratter BMW, Dikau R (eds) Umwelt als System–System als Umwelt? Systemtheorien auf dem Prüfstand. Oekom, München, pp 75–102

    Google Scholar 

  38. Chorley RJ, Schumm SA, Sudgen DE (1984) Geomorphology. London, New York, p 605

    Google Scholar 

  39. Dikau R (1996) Geomorphologische Reliefklassifikation und -analyse. Heidelberger Geographische Arbeiten, p 104

    Google Scholar 

  40. Dikau R (2005) Geomorphologische Perspektiven integrativer Forschungsansätze in Physischer Geographie und Humangeographie. In: Wardenga U, Müller-Mahn D (ed) Möglichkeiten und Grenzen integrativer Forschungsansätze in Physischer Geographie und Humangeographie. Forum ifl. Leibniz-Institut für Länderkunde, Leipzig, pp 91–108

    Google Scholar 

  41. Boulding KE (1980) Foreword. In: Zeleny M (ed) Autopoiesis. Dissipative structures and spontaneous social orders. Westview, Boulder, pp 17–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

von Elverfeldt, K. (2012). Fifth Problem Area: Complexity and Non-Linearity. In: System Theory in Geomorphology. Springer Theses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2822-6_7

Download citation

Publish with us

Policies and ethics