Skip to main content

Nitric Oxide Synthesis in the Mitochondria of Animal Cells

  • Chapter
  • First Online:
The Biology of Subcellular Nitric Oxide

Abstract

Several studies have pointed out that NO affects distinct functions of the mitochondria, such as oxidative phosphorylation, free radical generation, membrane potential and the mitochondrial pathway of apoptosis (Mitochondrion 3:187–204, 2004; Arterioscler Thromb Vasc Biol 30:643–647, 2010). The inhibitory effect of NO on mitochondrial respiration has been documented in various cell types (FEBS Lett 345:50–54, 1994; Biochem Biophys Res Commun 218:40–44, 1996; FEBS Lett 417:75–80, 1997; FEBS Lett 446:261–263, 1999). The underlying mechanism is the competitive and reversible inhibition of cytochrome-c oxidase (CcO, Complex IV) and the S-nitrosylation of electron transport chain proteins (FEBS Lett 345:50–54, 1994; Arch Biochem Biophys 328:85–92, 1996; Proc Natl Acad Sci USA 95:7631–7636, 1998). Although NO competes with O2 at CcO and thus inhibits respiration, CcO eliminates NO by oxidizing it to NO2 under normoxia (Trends Biochem Sci 27:33–39, 2002; J Bioenerg Biomembr 40:533–539, 2008) (Fig. 10.1). Moreover, in the presence of O2 , NO forms ONOO, thus the previously inhibited CcO is being reactivated (Arch Biochem Biophys 328:85–92, 1996). NO also mitigates CcO release and administering l-arginine and NOS-cofactors to isolated rat mitochondria increases mitochondrial respiration (Dev Neurosci 15:165–173, 1993; J Biol Chem 275:20474–20479, 2000). The effects of NO on the mitochondrial respiration depend on the local NO, O2 and ONOO concentrations (Fig. 10.2). For instance, in normoxic cells NO binds to guanylyl cyclase with much higher affinity than to CcO (Biochem J 405:223–231, 2007) and the inhibitory effect of NO on CcO becomes prominent under O2 limitations, when the reductive NO synthesis increases (Arterioscler Thromb Vasc Biol 30:643–647, 2010). A sustained mitochondrial NO level may initiate hypoxic signaling and adaptation of the respiratory electron chain to hypoxia (Free Radic Biol Med 33:755–764, 2002; Exp Biol Med (Maywood) 234:1020–1028, 2009) (Fig. 10.1). A possible NO release from the hypoxic cells can evoke local vasodilation and reoxygenation of the affected tissue (Proc Natl Acad Sci USA 104:18508–18513, 2007; Arterioscler Thromb Vasc Biol 30:643–647, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aguirre E, López-Bernardo E, Cadenas S (2011) Functional evidence for nitric oxide production by skeletal-muscle mitochondria from lipopolysaccharide-treated mice. Mitochondrion (Aguirre et al. 2011 Jun 12)

    Google Scholar 

  • Bates TE, Loesch A, Burnstock G, Clark JB (1995) Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 213:896–900

    Article  PubMed  CAS  Google Scholar 

  • Bates TE, Loesch A, Burnstock G, Clark JB (1996) Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 218:40–44

    Article  PubMed  CAS  Google Scholar 

  • Brittain T, Skommer J, Henty K, Birch N, Raychaudhuri S (2010) A role for human neuroglobin in apoptosis. IUBMB Life 62:878–885

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS (2004) Mitochondrial nitric oxide synthase. Mitochondrion 3:187–204

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Bolanos JP, Heales SJ (1999) The assumption that nitric oxide inhibits mitochondrial ATP synthesis is correct. FEBS Lett 446:261–263

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM, Anderson PG (2000) Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem 275:20474–20479

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Levonen AL, Shiva S, Sarti P, Darley-Usmar VM (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic Biol Med 33:755–764

    Article  PubMed  CAS  Google Scholar 

  • Carreras MC, Peralta JG, Converso DP, Finocchietto PV, Rebagliati I, Zaninovich AA, Poderoso JJ (2001) Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake. Am J Physiol Heart Circ Physiol 281:H2282–H2288

    PubMed  CAS  Google Scholar 

  • Carreras MC, Melani M, Riobo N, Converso DP, Gatto EM, Poderoso JJ (2002) Neuronal nitric oxide synthases in brain and extraneural tissues. Methods Enzymol 359:413–423

    Article  PubMed  CAS  Google Scholar 

  • Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287

    Article  PubMed  CAS  Google Scholar 

  • Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    Article  PubMed  CAS  Google Scholar 

  • Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–7636

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE (2002) Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci 27:33–39

    Article  PubMed  CAS  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539

    Article  PubMed  CAS  Google Scholar 

  • Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100:1128–1141

    Article  PubMed  CAS  Google Scholar 

  • Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 286:C406–C415

    Article  PubMed  CAS  Google Scholar 

  • Elfering SL, Sarkela TM, Giulivi C (2002) Biochemistry of mitochondrial nitric-oxide synthase. J Biol Chem 277:38079–38086

    Article  PubMed  CAS  Google Scholar 

  • Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Mendez C, Converso DP, Estevez A, Carreras MC, Poderoso JJ (2008) Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: implications for the metabolic syndrome. PLoS One 3:e1749

    Article  PubMed  Google Scholar 

  • Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Arciuch VG, Serra MP, Poderoso JJ, Carreras MC (2009) Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood) 234:1020–1028

    Article  CAS  Google Scholar 

  • Frandsen U, Lopez-Figueroa M, Hellsten Y (1996) Localization of nitric oxide synthase in human skeletal muscle. Biochem Biophys Res Commun 227:88–93

    Article  PubMed  CAS  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302:100–103

    Article  PubMed  CAS  Google Scholar 

  • Hansen MN, Jensen FB (2010) Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions. J Exp Biol 213:3593–3602

    Article  PubMed  CAS  Google Scholar 

  • Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat WC, Peterson J (2001) Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA 98:14126–14131

    Article  PubMed  CAS  Google Scholar 

  • Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS (1995) Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 211:375–381

    Article  PubMed  CAS  Google Scholar 

  • Koivisto A, Matthias A, Bronnikov G, Nedergaard J (1997) Kinetics of the inhibition of mitochondrial respiration by NO. FEBS Lett 417:75–80

    Article  PubMed  CAS  Google Scholar 

  • Kolanczyk M, Pech M, Zemojtel T, Yamamoto H, Mikula I, Calvaruso MA, Van Den Brand M, Richter R, Fischer B, Ritz A, Kossler N, Thurisch B, Spoerle R, Smeitink J, Kornak U, Chan D, Vingron M, Martasek P, Lightowlers RN, Nijtmans L, Schuelke M, Nierhaus KH, Mundlos S (2011) NOA1 is an essential GTPase required for mitochondrial protein synthesis. Mol Biol Cell 22:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kozlov AV, Staniek K, Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett 454:127–130

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Figueroa MO, Caamano C, Morano MI, Ronn LC, Akil H, Watson SJ (2000) Direct evidence of nitric oxide presence within mitochondria. Biochem Biophys Res Commun 272:129–133

    Article  PubMed  CAS  Google Scholar 

  • Lores-Arnaiz S, Lores Arnaiz MR, Czerniczyniec A, Cuello M, Bustamante J (2010) Mitochondrial function and nitric oxide production in hippocampus and cerebral cortex of rats exposed to enriched environment. Brain Res 1319:44–53

    Article  PubMed  CAS  Google Scholar 

  • Majlath I, Szalai G, Papp I, Vankova R, Janda T (2011) Atnoa1 mutant Arabidopsis plants induce compensation mechanisms to reduce the negative effects of the mutation. J Plant Physiol 168:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1993) Mitochondrial Ca2 +  transport and the role of intramitochondrial Ca2 +  in the regulation of energy metabolism. Dev Neurosci 15:165–173

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283:32957–32967

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants—where do we stand? Physiol Plant 138:372–383

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  PubMed  CAS  Google Scholar 

  • Nohl H, Staniek K, Sobhian B, Bahrami S, Redl H, Kozlov AV (2000) Mitochondria recycle nitrite back to the bioregulator nitric monoxide. Acta Biochim Pol 47:913–921

    PubMed  CAS  Google Scholar 

  • Palacios-Callender M, Hollis V, Mitchison M, Frakich N, Unitt D, Moncada S (2007) Cytochrome c oxidase regulates endogenous nitric oxide availability in respiring cells: a possible explanation for hypoxic vasodilation. Proc Natl Acad Sci USA 104:18508–18513

    Article  PubMed  CAS  Google Scholar 

  • Parihar A, Parihar MS, Chen Z, Ghafourifar P (2008a) mAtNOS1 induces apoptosis of human mammary adenocarcinoma cells. Life Sci 82:1077–1082

    Article  CAS  Google Scholar 

  • Parihar A, Parihar MS, Ghafourifar P (2008b) Significance of mitochondrial calcium and nitric oxide for apoptosis of human breast cancer cells induced by tamoxifen and etoposide. Int J Mol Med 21:317–324

    CAS  Google Scholar 

  • Parihar MS, Parihar A, Chen Z, Nazarewicz R, Ghafourifar P (2008c) mAtNOS1 regulates mitochondrial functions and apoptosis of human neuroblastoma cells. Biochim Biophys Acta 1780:921–926

    Article  CAS  Google Scholar 

  • Percival JM, Anderson KN, Huang P, Adams ME, Froehner SC (2010) Golgi and sarcolemmal neuronal NOS differentially regulate contraction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J Clin Invest 120:816–826

    Article  PubMed  CAS  Google Scholar 

  • Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  PubMed  CAS  Google Scholar 

  • Poyton RO, Castello PR, Ball KA, Woo DK, Pan N (2009) Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177:48–56

    Article  PubMed  CAS  Google Scholar 

  • Reutov VP, Sorokina EG (1998) NO-synthase and nitrite-reductase components of nitric oxide cycle. Biochemistry (Mosc) 63:874–884

    CAS  Google Scholar 

  • Riobo NA, Melani M, Sanjuan N, Fiszman ML, Gravielle MC, Carreras MC, Cadenas E, Poderoso JJ (2002) The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J Biol Chem 277:42447–42455

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Juarez F, Aguirre E, Cadenas S (2007) Relative sensitivity of soluble guanylate cyclase and mitochondrial respiration to endogenous nitric oxide at physiological oxygen concentration. Biochem J 405:223–231

    Article  PubMed  CAS  Google Scholar 

  • Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, Xu X, Murphy E, Darley-Usmar VM, Gladwin MT (2007) Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100:654–661

    Article  PubMed  CAS  Google Scholar 

  • Shiva S, Rassaf T, Patel RP, Gladwin MT (2011) The detection of the nitrite reductase and NO-generating properties of haemoglobin by mitochondrial inhibition. Cardiovasc Res 89:566–573

    Article  PubMed  CAS  Google Scholar 

  • Smagghe BJ, Trent JT 3rd, Hargrove MS (2008) NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo. PLoS One 3:e2039

    Google Scholar 

  • Sudhamsu J, Lee GI, Klessig DF, Crane BR (2008) The structure of YqeH. An AtNOS1/AtNOA1 ortholog that couples GTP hydrolysis to molecular recognition. J Biol Chem 283:32968–32976

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Kohr MJ, Nguyen T, Aponte AM, Connelly PS, Esfahani SG, Gucek M, Daniels MP, Steenbergen C, Murphy E (2012) Disruption of caveolae blocks ischemic preconditioning-mediated S-nitrosylation of mitochondrial proteins. Antioxid Redox Signal 16:45–56

    Google Scholar 

  • Sun LR, Hao FS, Lu BS, Ma LY (2010) AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signal Behav 5:1022–1024

    Article  PubMed  Google Scholar 

  • Takehara Y, Kanno T, Yoshioka T, Inoue M, Utsumi K (1995) Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch Biochem Biophys 323:27–32

    Article  PubMed  CAS  Google Scholar 

  • Taylor CT, Moncada S (2010) Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30:643–647

    Article  PubMed  CAS  Google Scholar 

  • Tirosh O, Guo Q, Sen CK, Packer L (2001) Mitochondrial control of inducible nitric oxide production in stimulated RAW 264.7 macrophages. Antioxid Redox Signal 3:711–719

    CAS  Google Scholar 

  • Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286:18277–18289

    Article  PubMed  CAS  Google Scholar 

  • Valdez LB, Zaobornyj T, Alvarez S, Bustamante J, Costa LE, Boveris A (2004) Heart mitochondrial nitric oxide synthase. Effects of hypoxia and aging. Mol Aspects Med 25:49–59

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Fan X, Lo EH, Wang X (2009) Neuroprotective roles and mechanisms of neuroglobin. Neurol Res 31:122–127

    Article  PubMed  Google Scholar 

  • Zemojtel T, Fröhlich A, Palmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006a) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  CAS  Google Scholar 

  • Zemojtel T, Kolanczyk M, Kossler N, Stricker S, Lurz R, Mikula I, Duchniewicz M, Schuelke M, Ghafourifar P, Martasek P, Vingron M, Mundlos S (2006b) Mammalian mitochondrial nitric oxide synthase: characterization of a novel candidate. FEBS Lett 580:455–462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rőszer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rőszer, T. (2012). Nitric Oxide Synthesis in the Mitochondria of Animal Cells. In: The Biology of Subcellular Nitric Oxide. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2819-6_10

Download citation

Publish with us

Policies and ethics