Skip to main content

Cross Talks Among Notch, Wnt, and Hedgehog Signaling Pathways Regulate Stem Cell Characteristics

  • Chapter
  • First Online:
Stem Cells and Human Diseases

Abstract

The use of stem cells as medicines is a promising area of research as they may help the body to replace damaged or lost tissue in a host of diseases including cancer. The integration of intrinsic and extrinsic signals is required to preserve the self-renewal and tissue regenerative capacity of adult stem cells, while protecting them from malignant conversion or loss of proliferative potential by death, differentiation or senescence. It is now clear that malignant tumors are heterogeneous and contain diverse subpopulations of cells with unique characteristics including the ability to initiate a tumor and metastasize. This phenomenon might be explained by the so-called cancer stem cell (CSC) theory. Recent technological developments have allowed a deeper understanding and characterization of CSCs. The CSCs share some of the common signaling pathways of self-renewal with that of normal stem cells or progenitor cells. Signaling pathways such as Notch, Sonic hedgehog and Wnt play major roles in stem cell self-renewal and metastasis. These pathways cross-talk and allow stem cells to balance their regenerative potential and the initiation of terminal differentiation programs, ensuring appropriate tissue homeostasis. Understanding the signaling circuitries regulating stem cell fate decisions might provide insights into cancer initiation and progression that involve the progressive loss of tissue-specific adult stem cells. Efficacious therapeutic approaches targeting the CSC population should be explored to overcome therapeutic failure and improve patient outcomes. This review will focus on the signaling pathways required for regulation of CSCs, and development of therapeutic approaches to target specifically CSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  2. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  3. Balordi F, Fishell G (2007) Mosaic removal of Hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J Neurosci 27:14248–14259

    Article  PubMed  CAS  Google Scholar 

  4. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  5. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  6. Bhanot P, Brink M, Samos CH, Hsieh J-C, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230

    Article  PubMed  CAS  Google Scholar 

  7. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  8. Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003) A genetic explanation of slaughter’s concept of field cancerization. Cancer Res 63:1727–1730

    PubMed  CAS  Google Scholar 

  9. Brivanlou AH, Darnell JE (2002) Signal transduction and the control of gene expression. Science 295:813–818

    Article  PubMed  CAS  Google Scholar 

  10. Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y (2005) Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci USA 102:14677–14682

    Article  PubMed  CAS  Google Scholar 

  11. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  12. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  13. Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163

    Article  PubMed  CAS  Google Scholar 

  14. Dean M (2009) ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 14:3–9

    Article  PubMed  Google Scholar 

  15. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2007) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  Google Scholar 

  16. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  PubMed  CAS  Google Scholar 

  17. Gao J, Graves S, Koch U, Liu S, Jankovic V, Buonamici S, El Andaloussi A, Nimer SD, Kee BL, Taichman R, Radtke F, Aifantis I (2009) Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4:548–558

    Article  PubMed  CAS  Google Scholar 

  18. Grandbarbe L, Bouissac J, Rand M, Hrabé de Angelis M, Artavanis-Tsakonas S, Mohier E (2003) Delta-Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development 130:1391–1402

    Article  PubMed  CAS  Google Scholar 

  19. Griffin J, Lowenberg B (1986) Clonogenic cells in acute myeloblastic leukemia. Blood 68:1185–1195

    PubMed  CAS  Google Scholar 

  20. Guenechea G, Gan OI, Dorrell C, Dick JE (2001) Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2:75–82

    Article  PubMed  CAS  Google Scholar 

  21. Gulino A, Ferretti E, De Smaele E (2009) Hedgehog signalling in colon cancer and stem cells. EMBO Mol Med 1:300–302

    Article  PubMed  CAS  Google Scholar 

  22. Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon RA, Cheng AM, Kopan R, Longmore GD (2004) A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104:3097–3105

    Article  PubMed  CAS  Google Scholar 

  23. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  PubMed  CAS  Google Scholar 

  24. He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  25. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  26. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G (2007) Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447:316–320

    Article  PubMed  CAS  Google Scholar 

  27. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Lergaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  28. Katoh Y, Katoh M (2005) Identification and characterization of rat Wnt6 and Wnt10a genes in silico. Int J Mol Med 15:527–531

    PubMed  CAS  Google Scholar 

  29. Kim K-i, Cho H-J, Hahn J-Y, Kim T-Y, Park K-W, Koo B-K, Soo Shin C, Kim C-H, Oh B-H, Lee M-M, Park Y-B, Kim H-S (2006) β-catenin overexpression augments angiogenesis and skeletal muscle regeneration through dual mechanism of vascular endothelial growth factor–mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler Thromb Vasc Biol 26:91–98

    Article  PubMed  CAS  Google Scholar 

  30. Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, Ogawa S, Hamada Y, Hirai H (2003) Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18:699–711

    Article  PubMed  CAS  Google Scholar 

  31. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after ­transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  32. Levis M, Murphy KM, Pham R, Kim K-T, Stine A, Li L, McNiece I, Smith BD, Small D (2005) Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood 106:673–680

    Article  PubMed  CAS  Google Scholar 

  33. Liu S, Dontu G, Mantle ID, Patel S, N-s A, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  PubMed  CAS  Google Scholar 

  34. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  35. Ma S, Chan K, Guan X-Y (2008) In search of liver cancer stem cells. Stem Cell Rev Rep 4:179–192

    Article  CAS  Google Scholar 

  36. Matikainen T, Laine J (2005) Placenta–an alternative source of stem cells. Toxicol Appl Pharmacol 207:544–549

    Article  PubMed  Google Scholar 

  37. Morgan TH (1917) The theory of the gene. Am Nat 51:513–544

    Article  Google Scholar 

  38. Nelson WJ, Nusse R (2004) Convergence of Wnt, ß-catenin, and cadherin pathways. Science 303:1483–1487

    Article  PubMed  CAS  Google Scholar 

  39. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109

    Article  PubMed  CAS  Google Scholar 

  40. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  CAS  Google Scholar 

  41. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  42. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R (1998) Redundant regulation of T cell differentiation and TCR[alpha] gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20

    Article  PubMed  CAS  Google Scholar 

  43. Palma V, Altaba ARi (2004) Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131:337–345

    Article  PubMed  CAS  Google Scholar 

  44. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L (2010) Targeting Notch to target cancer stem cells. Clin Cancer Res 16:3141–3152

    Article  PubMed  CAS  Google Scholar 

  45. Peters R, Leyvraz S, Perey L (1998) Apoptotic regulation in primitive hematopoietic precursors. Blood 92:2041–2052

    PubMed  CAS  Google Scholar 

  46. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  47. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    Article  PubMed  CAS  Google Scholar 

  48. Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    PubMed  CAS  Google Scholar 

  49. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  50. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50:649–657

    Article  PubMed  CAS  Google Scholar 

  51. Rittié L, Stoll SW, Kang S, Voorhees JJ, Fisher GJ (2009) Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell 8:738–751

    Article  PubMed  Google Scholar 

  52. Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999) Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development 126:3915–3924

    PubMed  CAS  Google Scholar 

  53. Sawyers CL, Denny CT, Witte ON (1991) Leukemia and the disruption of normal hematopoiesis. Cell 64:337–350

    Article  PubMed  CAS  Google Scholar 

  54. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed  CAS  Google Scholar 

  55. Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134:849–864

    Article  PubMed  CAS  Google Scholar 

  56. Sell S (1993) Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect 101:15–26

    PubMed  Google Scholar 

  57. Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22

    PubMed  CAS  Google Scholar 

  58. Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P (2007) Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25:1478–1489

    Article  PubMed  CAS  Google Scholar 

  59. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW (1998) Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134

    PubMed  CAS  Google Scholar 

  60. Tetsu O, McCormick F (1999) [beta]-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  61. Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  62. Valkenburg KC, Graveel CR, Zylstra-Diegel CR, Zhong Z, Williams BO (2011) Wnt/β-catenin signaling in normal and cancer stem cells. Cancers 3:2050–2079

    Article  CAS  Google Scholar 

  63. Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Altaba RiA (2009) Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1:338–351

    Article  PubMed  CAS  Google Scholar 

  64. Wang T-L, Rago C, Silliman N, Ptak J, Markowitz S, Willson JKV, Parmigiani G, Kinzler KW, Vogelstein B, Velculescu VE (2002) Prevalence of somatic alterations in the colorectal cancer cell genome. Proc Natl Acad Sci USA 99:3076–3080

    Article  PubMed  CAS  Google Scholar 

  65. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  PubMed  CAS  Google Scholar 

  66. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581

    Article  PubMed  CAS  Google Scholar 

  67. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  PubMed  CAS  Google Scholar 

  68. Winquist RJ, Boucher DM, Wood M, Furey BF (2009) Targeting cancer stem cells for more effective therapies: taking out cancer’s locomotive engine. Biochem Pharmacol 78:326–334

    Article  PubMed  CAS  Google Scholar 

  69. Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126:1590–1591

    Article  PubMed  CAS  Google Scholar 

  70. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grants from the National Institutes of Health (R01CA125262, RO1CA114469 and RO1CA125262-02S1), Susan G. Komen Breast Cancer Foundation, and Kansas Bioscience Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tang, SN., Shankar, S., Srivastava, R.K. (2012). Cross Talks Among Notch, Wnt, and Hedgehog Signaling Pathways Regulate Stem Cell Characteristics. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_27

Download citation

Publish with us

Policies and ethics