Skip to main content

Plasticity of Cancer Stem Cells

  • Chapter
  • First Online:
  • 1089 Accesses

Abstract

Cancer stem cell (CSC), also named cancer initiating cells and cancer propagating cells, are cancer cells that are highly undifferentiated and drive cancer growth in vivo. CSCs represent important targets for developing novel anti-cancer therapies, because they are highly tumorigenic and frequently resistant to traditional treatments. CSCs share many characteristics with normal stem cells such as self-renewal and multi-lineage differentiation capacity. CSCs were once thought to be a defined subpopulation in a given cancer samples. However, recent research has identified unexpected plasticity of CSCs. Through differentiation and dedifferentiation processes, CSC and non-stem cancer cell status are interchangeable. Also, CSCs may transdifferentiate into other cell lineages to help tumor growth. The plasticity of CSC is primarily controlled by tumor microenvironment signals. Those discoveries underline the importance of studying the interaction between CSC and its microenvironment, which may lead to identification of novel drug candidates in treating relapsing malignancies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261

    Article  PubMed  CAS  Google Scholar 

  2. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  4. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea – a paradigm shift. Cancer Res 66(4):1883–1890, discussion 1895–1896

    Article  PubMed  CAS  Google Scholar 

  5. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  PubMed  CAS  Google Scholar 

  6. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    Article  PubMed  CAS  Google Scholar 

  7. O’Brien CA et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  8. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  9. Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  PubMed  CAS  Google Scholar 

  10. Cairo S et al (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci USA 107(47):20471–20476

    Article  PubMed  CAS  Google Scholar 

  11. Shimono Y et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603

    Article  PubMed  CAS  Google Scholar 

  12. Ji Q et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816

    Article  PubMed  Google Scholar 

  13. Li Z et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  PubMed  CAS  Google Scholar 

  14. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300(1):10–19

    Article  PubMed  CAS  Google Scholar 

  15. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736

    Article  PubMed  CAS  Google Scholar 

  16. Wu Y, Wu PY (2009) CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev 18(8):1127–1134

    Article  PubMed  CAS  Google Scholar 

  17. Cheng JX, Liu BL, Zhang X (2009) How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat Rev 35(5):403–408

    Article  PubMed  CAS  Google Scholar 

  18. Curtis SJ et al (2010) Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7(1):127–133

    Article  PubMed  CAS  Google Scholar 

  19. Dick JE (2009) Looking ahead in cancer stem cell research. Nat Biotechnol 27(1):44–46

    Article  PubMed  CAS  Google Scholar 

  20. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    Article  PubMed  CAS  Google Scholar 

  21. Cheng L, Bao S, Rich JN (2010) Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80(5):654–665

    Article  PubMed  CAS  Google Scholar 

  22. Gupta PB et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  PubMed  CAS  Google Scholar 

  23. Merlos-Suarez A et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8(5):511–524

    Article  PubMed  CAS  Google Scholar 

  24. Stocum DL (2004) Amphibian regeneration and stem cells. Curr Top Microbiol Immunol 280:1–70

    Article  PubMed  CAS  Google Scholar 

  25. Sheng XR, Brawley CM, Matunis EL (2009) Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell 5(2):191–203

    Article  PubMed  CAS  Google Scholar 

  26. Elaut G et al (2006) Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr Drug Metab 7(6):629–660

    Article  PubMed  CAS  Google Scholar 

  27. Spyridonidis A et al (2005) Stem cell plasticity: the debate begins to clarify. Stem Cell Rev 1(1):37–43

    Article  PubMed  CAS  Google Scholar 

  28. Jahagirdar BN, Verfaillie CM (2005) Multipotent adult progenitor cell and stem cell plasticity. Stem Cell Rev 1(1):53–59

    Article  PubMed  CAS  Google Scholar 

  29. Gritti A, Vescovi AL, Galli R (2002) Adult neural stem cells: plasticity and developmental potential. J Physiol Paris 96(1–2):81–90

    Article  PubMed  CAS  Google Scholar 

  30. Wurmser AE, Gage FH (2002) Stem cells: cell fusion causes confusion. Nature 416(6880):485–487

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  32. Szabo E et al (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–526

    Article  PubMed  CAS  Google Scholar 

  33. Pfisterer U et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA 108(25):10343–10348

    Article  PubMed  CAS  Google Scholar 

  34. Kim J et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci USA 108(19):7838–7843

    Article  PubMed  CAS  Google Scholar 

  35. Ieda M et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  PubMed  CAS  Google Scholar 

  36. Huang P et al (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356):386–389

    Google Scholar 

  37. Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  PubMed  CAS  Google Scholar 

  38. Lister R et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  PubMed  CAS  Google Scholar 

  39. Djuric U, Ellis J (2010) Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Res Ther 1(1):3

    Article  PubMed  Google Scholar 

  40. Sell S (2005) Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev 1(3):197–205

    Article  PubMed  CAS  Google Scholar 

  41. Novak R et al (2011) Single-cell multiplex gene detection and sequencing with microfluidically generated agarose emulsions. Angew Chem Int Ed Engl 50(2):390–395

    Article  PubMed  CAS  Google Scholar 

  42. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  PubMed  CAS  Google Scholar 

  43. Heddleston JM et al (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284

    Article  PubMed  CAS  Google Scholar 

  44. Hjelmeland AB et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18(5):829–840

    Article  PubMed  CAS  Google Scholar 

  45. Roesch A et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594

    Article  PubMed  CAS  Google Scholar 

  46. Espada J et al (2009) Wnt signalling and cancer stem cells. Clin Transl Oncol 11(7):411–427

    Article  PubMed  CAS  Google Scholar 

  47. Pannuti A et al (2010) Targeting Notch to target cancer stem cells. Clin Cancer Res 16(12):3141–3152

    Article  PubMed  CAS  Google Scholar 

  48. Merchant AA, Matsui W (2010) Targeting Hedgehog–a cancer stem cell pathway. Clin Cancer Res 16(12):3130–3140

    Article  PubMed  CAS  Google Scholar 

  49. Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    Article  PubMed  CAS  Google Scholar 

  50. Hofmeister V, Schrama D, Becker JC (2008) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 57(1):1–17

    Article  PubMed  CAS  Google Scholar 

  51. [PZ Innovation Prize for Avastin: Bevacizumab-new therapy option in colon carcinoma]. Krankenpfl J, 2005. 43(7–10): p. 234

    Google Scholar 

  52. Miles DW et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247

    Article  PubMed  CAS  Google Scholar 

  53. Sathornsumetee S et al (2010) Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 12(12):1300–1310

    PubMed  CAS  Google Scholar 

  54. Klein CA (2008) Cancer. The metastasis cascade. Science 321(5897):1785–1787

    Article  PubMed  CAS  Google Scholar 

  55. Hermann PC, Huber SL, Heeschen C (2008) Metastatic cancer stem cells: a new target for anti-cancer therapy? Cell Cycle 7(2):188–193

    Article  PubMed  CAS  Google Scholar 

  56. Hirano T et al (2003) Usefulness of TA02 (napsin A) to distinguish primary lung adenocarcinoma from metastatic lung adenocarcinoma. Lung Cancer 41(2):155–162

    Article  PubMed  Google Scholar 

  57. Hart IR (1982) ‘Seed and soil’ revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev 1(1):5–16

    Article  PubMed  CAS  Google Scholar 

  58. Ben-Porath I et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    Article  PubMed  CAS  Google Scholar 

  59. Wong DJ et al (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhong Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, Z. (2012). Plasticity of Cancer Stem Cells. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_26

Download citation

Publish with us

Policies and ethics