Skip to main content

Cytotoxic Mechanisms of Islet Amyloid Polypeptide in the Pathogenesis of Type-2 Diabetes Mellitus (T2DM)

  • Chapter
  • First Online:
Book cover Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases

Abstract

Diabetes mellitus (DM) is a chronic syndrome that occurs due to loss of the insulin-producing β-cells in the islets of Langerhans of the pancreas by a β-cell-specific autoimmune process, leading to insulin deficiency (type-1 DM, T1DM) or when insufficient amounts of insulin are produced by β-cells, or when resistance to the action of insulin occurs in different tissues (type-2 DM, T2DM). Several mechanisms may contribute to the progressive β-cell failure in T2DM, including loss of β-cell mass, β-cell exhaustion, and the cytotoxic effects of elevated glucose and lipid levels. Another hallmark of T2DM is the accumulation of β-cell-produced amylin, also called islet amyloid polypeptide (IAPP), which forms amyloid that is present in approximately 95% of T2DM patients.

IAPP is a 37-amino-acid peptide, which is co-synthesized, co-packaged within the Golgi apparatus, and co-expressed with insulin upon exposure to glucose stimulation (nutrient stimuli). IAPP aggregation induces β-cell death and decreases β-cell proliferation. Several mechanisms have been hypothesized to explain IAPP cytotoxicity. First, IAPP may induce apoptosis through an extrinsic pathway involving overexpression of Fas ligand and IL-1 in β-cells due to glucose toxicity; and an intrinsic pathway, causing endoplasmic reticulum stress due to accumulation of aggregated proteins. Second, IAPP interaction with the cell membrane may lead to membrane permeabilization by IAPP oligomers and cause formation of membrane pores, or the process of IAPP aggregation itself can cause membrane disruption.

Development of new methods to decrease islet amyloid formation is important for prevention of β-cell mass loss and functional decline due to aggregated IAPP cytotoxicity. Reduction of amyloid formation may lead to effective treatment for T2DM and to a better understanding of the exact mechanism of IAPP cytotoxicity, which currently is debatable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Area Postrema

A1c:

Glycated hemoglobin

C/EBP:

CCAAT-Enhancer-Binding Protein

CHOP:

C/EBP Homologous Protein

DISC:

Death-Inducing Signaling Complex

DM:

Diabetes Mellitus

T1DM:

Type-1 Diabetes Mellitus

T2DM:

Type-2 Diabetes Mellitus

ER:

Endoplasmatic Reticulum

FDA:

US Food and Drug Administration

GAGs:

Glycosaminoglycans

IAPP:

Islet Amyloid Polypeptide

hIAPP:

Human IAPP

rIAPP:

Rat IAPP

IDE:

Insulin Degrading Enzyme

IPBN:

Parabrachial Nucleus

JNK1:

Jun N-terminal Kinase 1

MAPK:

p38 Mitogen-Activated Protein Kinase

NTS:

Nucleus of the Solitary Tract

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling

TXNIP:

Thioredoxin-Interacting Protein

UPR:

Unfolded-protein Response

References

  • Abedini A, Raleigh DP (2006) Destabilization of human IAPP amyloid fibrils by proline mutations outside of the putative amyloidogenic domain: is there a critical amyloidogenic domain in human IAPP? J Mol Biol 355:274–281

    PubMed  CAS  Google Scholar 

  • Ahronheim JH (1943) The nature of the hyaline material in the pancreatic islands in diabetes ­mellitus. Am J Pathol 19:873–882

    PubMed  CAS  Google Scholar 

  • Aitken JF, Loomes KM, Konarkowska B, Cooper GJ (2003) Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid. Biochem J 374:779–784

    PubMed  CAS  Google Scholar 

  • Amodeo P, Morelli MA, Castiglione Motta A (1994) Multiple conformations and proline cis–trans isomerization in salmon calcitonin: a combined nuclear magnetic resonance, distance ­geometry, and molecular mechanics study. Biochemistry 33:10754–10762

    PubMed  CAS  Google Scholar 

  • Anguiano M, Nowak RJ, Lansbury PT Jr (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343

    PubMed  CAS  Google Scholar 

  • Araki E, Oyadomari S, Mori M (2003) Endoplasmic reticulum stress and diabetes mellitus. Intern Med 42:7–14

    PubMed  Google Scholar 

  • Arnelo U, Permert J, Adrian TE, Larsson J, Westermark P, Reidelberger RD (1996) Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am J Physiol 271:R1654–R1659

    PubMed  CAS  Google Scholar 

  • Augstein P, Stephens LA, Allison J, Elefanty AG, Ekberg M, Kay TW, Harrison LC (1998) β-Cell apoptosis in an accelerated model of autoimmune diabetes. Mol Med 4:495–501

    PubMed  CAS  Google Scholar 

  • Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276:34156–34161

    PubMed  CAS  Google Scholar 

  • Badman MK, Shennan KI, Jermany JL, Docherty K, Clark A (1996) Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett 378:227–231

    PubMed  CAS  Google Scholar 

  • Balali-Mood K, Ashley RH, Hauss T, Bradshaw JP (2005) Neutron diffraction reveals ­sequence-specific membrane insertion of pre-fibrillar islet amyloid polypeptide and inhibition by rifampicin. FEBS Lett 579:1143–1148

    PubMed  CAS  Google Scholar 

  • Barth SW, Riediger T, Lutz TA, Rechkemmer G (2004) Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res 997:97–102

    PubMed  CAS  Google Scholar 

  • Bellamy CO, Malcomson RD, Harrison DJ, Wyllie AH (1995) Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol 6:3–16

    PubMed  CAS  Google Scholar 

  • Bennett RG, Hamel FG, Duckworth WC (2003) An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 52:2315–2320

    PubMed  CAS  Google Scholar 

  • Betsholtz C, Christmansson L, Engstrom U, Rorsman F, Svensson V, Johnson KH, Westermark P (1989) Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett 251:261–264

    PubMed  CAS  Google Scholar 

  • Betsholtz C, Christmanson L, Engstrom U, Rorsman F, Jordan K, O’Brien TD, Murtaugh M, Johnson KH, Westermark P (1990) Structure of cat islet amyloid polypeptide and identification of amino acid residues of potential significance for islet amyloid formation. Diabetes 39:118–122

    PubMed  CAS  Google Scholar 

  • Betsholtz C, Christmansson L, Engström U, Rorsman F, Svensson V, Johnson KH, Westermark P (1998) Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species. FEBS Lett 17:261–264

    Google Scholar 

  • Bliss M (1982) Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull Hist Med 56:554–568

    PubMed  CAS  Google Scholar 

  • Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Targher G, Alberiche M, Bonadonna RC, Muggeo M (1998) Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes 47:1643–1649

    PubMed  CAS  Google Scholar 

  • Boscaro M, Barzon L, Fallo F, Sonino N (2001) Cushing’s syndrome. Lancet 357:783–791

    PubMed  CAS  Google Scholar 

  • Bouret SG (2010) Development of hypothalamic neural networks controlling appetite. Forum Nutr 63:84–93

    PubMed  CAS  Google Scholar 

  • Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    PubMed  CAS  Google Scholar 

  • Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB (2008) Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab 7:179–185

    PubMed  CAS  Google Scholar 

  • Breeze AL, Harvey TS, Bazzo R, Campbell ID (1991) Solution structure of human calcitonin gene-related peptide by 1 H NMR and distance geometry with restrained molecular dynamics. Biochemistry 30:575–582

    PubMed  CAS  Google Scholar 

  • Brender JR, Durr UH, Heyl D, Budarapu MB, Ramamoorthy A (2007) Membrane fragmentation by an amyloidogenic fragment of human islet amyloid polypeptide detected by solid-state NMR spectroscopy of membrane nanotubes. Biochim Biophys Acta 1768:2026–2029

    PubMed  CAS  Google Scholar 

  • Brender JR, Hartman K, Reid KR, Kennedy RT, Ramamoorthy A (2008) A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47:12680–12688

    PubMed  CAS  Google Scholar 

  • Brender JR, Hartman K, Nanga RP, Popovych N, de la Salud Bea R, Vivekanandan S, Marsh EN, Ramamoorthy A (2010) Role of zinc in human islet amyloid polypeptide aggregation. J Am Chem Soc 132:8973–8983

    PubMed  CAS  Google Scholar 

  • Butler PC, Chou J, Carter WB, Wang YN, Bu BH, Chang D, Chang JK, Rizza RA (1990) Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 39:752–756

    PubMed  CAS  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110

    PubMed  CAS  Google Scholar 

  • Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC, Butler PC (2004) Diabetes due to a progressive defect in β-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 53:1509–1516

    PubMed  CAS  Google Scholar 

  • Carulla N, Caddy GL, Hall DR, Zurdo J, Gairi M, Feliz M, Giralt E, Robinson CV, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558

    PubMed  CAS  Google Scholar 

  • Casas S, Gomis R, Gribble FM, Altirriba J, Knuutila S, Novials A (2007) Impairment of the ubiquitin–proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet amyloid polypeptide and contributes to pancreatic β-cell ­apoptosis. Diabetes 56:2284–2294

    PubMed  CAS  Google Scholar 

  • Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC (1994) Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care 17:961–969

    PubMed  CAS  Google Scholar 

  • Charge SB, de Koning EJ, Clark A (1995) Effect of pH and insulin on fibrillogenesis of islet ­amyloid polypeptide in vitro. Biochemistry 34:14588–14593

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Hamandi K, Mullan M, Goate A, Hardy J, Backhovens H, Martin JJ, Broeckhoven CV (1991) Screening for the β-amyloid precursor protein mutation (APP717: Val  →  Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci Lett 129:134–135

    PubMed  CAS  Google Scholar 

  • Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, Lusis AJ, Davis RA, Shalev A (2008) Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and ­pancreatic β-cell mass and protects against diabetes. FASEB J 22:3581–3594

    PubMed  CAS  Google Scholar 

  • Christmanson L, Betsholtz C, Leckstrom A, Engstrom U, Cortie C, Johnson KH, Adrian TE, Westermark P (1993) Islet amyloid polypeptide in the rabbit and European hare: studies on its relationship to amyloidogenesis. Diabetologia 36:183–188

    PubMed  CAS  Google Scholar 

  • Ciechanover A (2005) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ 12:1178–1190

    PubMed  CAS  Google Scholar 

  • Clark A (1989) Islet amyloid and type 2 diabetes. Diabet Med 6:561–567

    PubMed  CAS  Google Scholar 

  • Clark A, Nilsson MR (2004) Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 47:157–169

    PubMed  CAS  Google Scholar 

  • Clark A, Cooper GJ, Lewis CE, Morris JF, Willis AC, Reid KB, Turner RC (1987) Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 2:231–234

    PubMed  CAS  Google Scholar 

  • Clark A, Wells CA, Buley ID, Cruickshank JK, Vanhegan RI, Matthews DR, Cooper GJ, Holman RR, Turner RC (1988) Islet amyloid, increased α-cells, reduced β-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159

    PubMed  CAS  Google Scholar 

  • Cohen FE, Kelly JW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426:905–909

    PubMed  CAS  Google Scholar 

  • Colin C, Demasi MA, Degaki TL, Bustos-Valenzuela JC, Figueira RC, Montor WR, Cruz LO, Lojudice FH, Muras AG, Pereira TM, Winnischofer SM, Hasegawa AP, Carreira AC, Verbisck NV, Correa RG, Garay-Malpartida HM, Mares-Guia TR, Correa-Giannella ML, Granjeiro JM, Sogayar MC (2008) NUCEL (Cell and Molecular Therapy Center): a multidisciplinary center for translational research in Brazil. Mol Biotechnol 39:89–95

    PubMed  CAS  Google Scholar 

  • Cooper GJ (1994) Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev 15:163–201

    PubMed  CAS  Google Scholar 

  • Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 84:8628–8632

    PubMed  CAS  Google Scholar 

  • Cooper ME, McNally PG, Phillips PA, Johnston CI (1995) Amylin stimulates plasma renin concentration in humans. Hypertension 26:460–464

    PubMed  CAS  Google Scholar 

  • Costa RO, Ferreiro E, Cardoso SM, Oliveira CR, Pereira CMF (2010) ER stress-mediated apoptotic pathway induced by amyloid-β. J Alzheimers Dis 20:625–636

    PubMed  CAS  Google Scholar 

  • D’Alessio DA, Verchere CB, Kahn SE, Hoagland V, Baskin DG, Palmiter RD, Ensinck JW (1994) Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43:1457–1461

    PubMed  Google Scholar 

  • de Koning EJ, Bodkin NL, Hansen BC, Clark A (1993a) Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in β-cell population. Diabetologia 36:378–384

    PubMed  Google Scholar 

  • de Koning EJ, Hoppener JW, Oosterwijk C, Verbeek SJ, Visser HJ, Jansz HS, Lips CJ, Morris JF, Clark A (1993b) Localisation of islet amyloid polypeptide (IAPP) in pancreatic islets of transgenic mice expressing the human or rat IAPP gene. Biochem Soc Trans 21:26S

    PubMed  Google Scholar 

  • de Koning EJ, Hoppener JW, Verbeek JS, Oosterwijk C, van Hulst KL, Baker CA, Lips CJ, Morris JF, Clark A (1994a) Human islet amyloid polypeptide accumulates at similar sites in islets of transgenic mice and humans. Diabetes 43:640–644

    PubMed  Google Scholar 

  • de Koning EJ, Morris ER, Hofhuis FM, Posthuma G, Hoppener JW, Morris JF, Capel PJ, Clark A, Verbeek JS (1994b) Intra- and extracellular amyloid fibrils are formed in cultured pancreatic islets of transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 91:8467–8471

    PubMed  Google Scholar 

  • Dean L, McEntyre J (2004) The genetic landscape of diabetes. National Center for Biotechnology Information (US), National Library of Medicine, National Institutes of Health, Bethesda

    Google Scholar 

  • DeFronzo RA (2004) Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 88:787–835, ix

    PubMed  CAS  Google Scholar 

  • Del Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, Torri S, Pollera M, Boggi U, Mosca F, Del Prato S, Marchetti P (2005) Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 54:727–735

    PubMed  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    PubMed  CAS  Google Scholar 

  • Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, Frank A, Velidedeoglu E, Desai NM, Koeberlein B, Wolf B, Barker CF, Naji A, Matschinsky FM, Markmann JF (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53:624–632

    PubMed  CAS  Google Scholar 

  • Dobolyi A (2009) Central amylin expression and its induction in rat dams. J Neurochem 111:1490–1500

    PubMed  CAS  Google Scholar 

  • Domanov YA, Kinnunen PK (2008) Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers. J Mol Biol 376:42–54

    PubMed  CAS  Google Scholar 

  • Ehrlich JC, Ratner IM (1961) Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and non-diabetic individuals. Am J Pathol 38:49–59

    PubMed  CAS  Google Scholar 

  • Elbein SC (2009) Genetics factors contributing to type 2 diabetes across ethnicities. J Diabetes Sci Technol 3:685–689

    PubMed  Google Scholar 

  • Engel MF (2009) Membrane permeabilization by islet amyloid polypeptide. Chem Phys Lipids 160:1–10

    PubMed  CAS  Google Scholar 

  • Engel MF, Yigittop H, Elgersma RC, Rijkers DT, Liskamp RM, de Kruijff B, Hoppener JW, Antoinette Killian J (2006) Islet amyloid polypeptide inserts into phospholipid monolayers as monomer. J Mol Biol 356:783–789

    PubMed  CAS  Google Scholar 

  • Engel MF, Khemtemourian L, Kleijer CC, Meeldijk HJ, Jacobs J, Verkleij AJ, de Kruijff B, Killian JA, Hoppener JW (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci USA 105:6033–6038

    PubMed  CAS  Google Scholar 

  • Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK (2008) Small-molecule aggregates inhibit amyloid polymerization. Nat Chem Biol 4:197–199

    PubMed  CAS  Google Scholar 

  • Fineman M, Weyer C, Maggs DG, Strobel S, Kolterman OG (2002a) The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm Metab Res 34:504–508

    PubMed  CAS  Google Scholar 

  • Fineman MS, Koda JE, Shen LZ, Strobel SA, Maggs DG, Weyer C, Kolterman OG (2002b) The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism 51:636–641

    PubMed  CAS  Google Scholar 

  • Fleming BB, Greenfield S, Engelgau MM, Pogach LM, Clauser SB, Parrott MA (2001) The ­diabetes quality improvement project: moving science into health policy to gain an edge on the diabetes epidemic. Diabetes Care 24:1815–1820

    PubMed  CAS  Google Scholar 

  • Fox N, Schrementi J, Nishi M, Ohagi S, Chan SJ, Heisserman JA, Westermark GT, Leckstrom A, Westermark P, Steiner DF (1993) Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus (NIDDM). FEBS Lett 323:40–44

    PubMed  CAS  Google Scholar 

  • Friedman R, Pellarin R, Caflisch A (2009) Amyloid aggregation on lipid bilayers and its impact on membrane permeability. J Mol Biol 387:407–415

    PubMed  CAS  Google Scholar 

  • Furukawa H, Carroll RJ, Swift HH, Steiner DF (1999) Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic β-cell line MIN6. Diabetes 48:1395–1401

    PubMed  CAS  Google Scholar 

  • Garcia-Gonzalez CL, Montoya-Fuentes H, Padilla-Rosas M, Sanchez-Corona J (2007) Amylin S20G mutation in Mexican population. Diabetes Res Clin Pract 76:146–148

    PubMed  CAS  Google Scholar 

  • Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J, Westermark P, Sundler F, Ahren B, Betsholtz C (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun 250:271–277

    PubMed  CAS  Google Scholar 

  • Gebre-Medhin S, Olofsson C, Mulder H (2000) Islet amyloid polypeptide in the islets of Langerhans: Friend or foe? Diabetologia 43:687–695

    PubMed  CAS  Google Scholar 

  • Gellermann GP, Appel TR, Tannert A, Radestock A, Hortschansky P, Schroeckh V, Leisner C, Lutkepohl T, Shtrasburg S, Rocken C, Pras M, Linke RP, Diekmann S, Fandrich M (2005) Raft lipids as common components of human extracellular amyloid fibrils. Proc Natl Acad Sci USA 102:6297–6302

    PubMed  CAS  Google Scholar 

  • Gilbey SG, Ghatei MA, Bretherton-Watt D, Zaidi M, Jones PM, Perera T, Beacham J, Girgis S, Bloom SR (1991) Islet amyloid polypeptide: production by an osteoblast cell line and possible role as a paracrine regulator of osteoclast function in man. Clin Sci (Lond) 81:803–808

    CAS  Google Scholar 

  • Gilead S, Gazit E (2004) Inhibition of amyloid fibril formation by peptide analogues modified with α-aminoisobutyric acid. Angew Chem Int Ed Engl 43:4041–4044

    PubMed  CAS  Google Scholar 

  • Gilead S, Gazit E (2008) The role of the 14–20 domain of the islet amyloid polypeptide in amyloid formation. Exp Diabetes Res 2008:256954

    PubMed  Google Scholar 

  • Glabe CG (2004) Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem Sci 29:542–547

    PubMed  CAS  Google Scholar 

  • Glenner GG, Eanes ED, Wiley CA (1998) Amyloid fibrils formed from a segment of the pancreatic islet amyloid protein. Biochem Biophys Res Commun 155:608–614

    Google Scholar 

  • Goldsbury C, Goldie K, Pellaud J, Seelig J, Frey P, Muller SA, Kistler J, Cooper GJ, Aebi U (2000) Amyloid fibril formation from full-length and fragments of amylin. J Struct Biol 130:352–362

    PubMed  CAS  Google Scholar 

  • Gotz J, Ittner LM, Lim YA (2009) Common features between diabetes mellitus and Alzheimer’s disease. Cell Mol Life Sci 66:1321–1325

    PubMed  CAS  Google Scholar 

  • Green J, Goldsbury C, Mini T, Sunderji S, Frey P, Kistler J, Cooper G, Aebi U (2003) Full-length rat amylin forms fibrils following substitution of single residues from human amylin. J Mol Biol 326:1147–1156

    PubMed  CAS  Google Scholar 

  • Green JD, Kreplak L, Goldsbury C, Li Blatter X, Stolz M, Cooper GS, Seelig A, Kistler J, Aebi U (2004) Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J Mol Biol 342:877–887

    PubMed  CAS  Google Scholar 

  • Gregg EW, Narayan KMV (2000) Type 2 diabetes and cognitive function: are cognitive impairment and dementia complications of type 2 diabetes? Clin Geriatr 8:57–72

    Google Scholar 

  • Griffiths JM, Ashburn TT, Auger M, Costa PR, Griffin RG, Lansbury PT (1995) Rotational ­resonance solidstate NMR elucidates a structural model of pancreatic amyloid. J Am Chem Soc 12:3539–3546

    Google Scholar 

  • Gurlo T, Ryazantsev S, Huang CJ, Yeh MW, Reber HA, Hines OJ, O’Brien TD, Glabe CG, Butler PC (2010) Evidence for proteotoxicity in β cells in type 2 diabetes: toxic islet amyloid ­polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol 176:861–869

    PubMed  CAS  Google Scholar 

  • Haapasalo A, Viswanathan J, Bertram L, Soininen H, Tanzi RE, Hiltunen M (2010) Emerging role of Alzheimer’s disease-associated ubiquilin-1 in protein aggregation. Biochem Soc Trans 38:150–155

    PubMed  CAS  Google Scholar 

  • Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29:303–316

    PubMed  CAS  Google Scholar 

  • Hanabusa T, Kubo K, Oki C, Nakano Y, Okai K, Sanke T, Nanjo K (1992) Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15:89–96

    PubMed  CAS  Google Scholar 

  • Hansen I, Tsalikian E, Beaufrere B, Gerich J, Haymond M, Rizza R (1986) Insulin resistance in ­acromegaly: defects in both hepatic and extrahepatic insulin action. Am J Physiol 250:E269–E273

    PubMed  CAS  Google Scholar 

  • Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461

    PubMed  CAS  Google Scholar 

  • Harroun TA, Bradshaw JP, Ashley RH (2001) Inhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation. FEBS Lett 507:200–204

    PubMed  CAS  Google Scholar 

  • Hayden MR, Tyagi SC (2001) “A” is for amylin and amyloid in type 2 diabetes mellitus. JOP 2:124–139

    PubMed  CAS  Google Scholar 

  • Hiddinga HJ, Eberhardt NL (1999) Intracellular amyloidogenesis by human islet amyloid polypeptide induces apoptosis in COS-1 cells. Am J Pathol 154:1077–1088

    PubMed  CAS  Google Scholar 

  • Higham CE, Hull RL, Lawrie L, Shennan KI, Morris JF, Birch NP, Docherty K, Clark A (2000) Processing of synthetic pro-islet amyloid polypeptide (proIAPP) ‘amylin’ by recombinant ­prohormone convertase enzymes, PC2 and PC3, in vitro. Eur J Biochem 267:4998–5004

    PubMed  CAS  Google Scholar 

  • Hirakura Y, Yiu WW, Yamamoto A, Kagan BL (2000) Amyloid peptide channels: blockade by zinc and inhibition by Congo red (amyloid channel block). Amyloid 7:194–199

    PubMed  CAS  Google Scholar 

  • Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol 165:347–356

    PubMed  CAS  Google Scholar 

  • Hoppener JW, Nieuwenhuis MG, Vroom TM, Ahren B, Lips CJ (2002) Role of islet amyloid in type 2 diabetes mellitus: consequence or cause? Mol Cell Endocrinol 197:205–212

    PubMed  CAS  Google Scholar 

  • Hou X, Ling Z, Quartier E, Foriers A, Schuit F, Pipeleers D, Van Schravendijk C (1999) Prolonged exposure of pancreatic β cells to raised glucose concentrations results in increased cellular content of islet amyloid polypeptide precursors. Diabetologia 42:188–194

    PubMed  CAS  Google Scholar 

  • Howard CF Jr (1986) Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia 29:301–306

    PubMed  Google Scholar 

  • Huang CJ, Haataja L, Gurlo T, Butler AE, Wu X, Soeller WC, Butler PC (2007a) Induction of endoplasmic reticulum stress-induced β-cell apoptosis and accumulation of polyubiquitinated proteins by human islet amyloid polypeptide. Am J Physiol Endocrinol Metab 293:E1656–E1662

    PubMed  CAS  Google Scholar 

  • Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC (2007b) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027

    PubMed  CAS  Google Scholar 

  • Hubbard JA, Martin SR, Chaplin LC, Bose C, Kelly SM, Price NC (1991) Solution structures of calcitonin-gene-related-peptide analogues of calcitonin-gene-related peptide and amylin. Biochem J 275(Pt 3):785–788

    PubMed  CAS  Google Scholar 

  • Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643

    PubMed  CAS  Google Scholar 

  • Hull RL, Shen ZP, Watts MR, Kodama K, Carr DB, Utzschneider KM, Zraika S, Wang F, Kahn SE (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54:2235–2244

    PubMed  CAS  Google Scholar 

  • Hull RL, Zraika S, Udayasankar J, Aston-Mourney K, Subramanian SL, Kahn SE (2009) Amyloid formation in human IAPP transgenic mouse islets and pancreas, and human pancreas, is not associated with endoplasmic reticulum stress. Diabetologia 52:1102–1111

    PubMed  CAS  Google Scholar 

  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902

    PubMed  CAS  Google Scholar 

  • Jaikaran ET, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537:179–203

    PubMed  CAS  Google Scholar 

  • Jaikaran ET, Higham CE, Serpell LC, Zurdo J, Gross M, Clark A, Fraser PE (2001) Identification of a novel human islet amyloid polypeptide β-sheet domain and factors influencing fibrillogenesis. J Mol Biol 308:515–525

    PubMed  CAS  Google Scholar 

  • Jaikaran ET, Nilsson MR, Clark A (2004) Pancreatic β-cell granule peptides form ­heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation. Biochem J 377:709–716

    PubMed  CAS  Google Scholar 

  • Janciauskiene S, Ahren B (2000) Fibrillar islet amyloid polypeptide differentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem Biophys Res Commun 267:619–625

    PubMed  CAS  Google Scholar 

  • Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK, Butler PC (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:7283–7288

    PubMed  CAS  Google Scholar 

  • Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498

    PubMed  CAS  Google Scholar 

  • Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481

    PubMed  CAS  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    PubMed  CAS  Google Scholar 

  • Jeworrek C, Hollmann O, Steitz R, Winter R, Czeslik C (2009) Interaction of IAPP and insulin with model interfaces studied using neutron reflectometry. Biophys J 96:1115–1123

    PubMed  CAS  Google Scholar 

  • Kagan BL, Azimov R, Azimova R (2004) Amyloid peptide channels. J Membr Biol 202:1–10

    PubMed  CAS  Google Scholar 

  • Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the ­disproportionate proinsulinemia of NIDDM. Diabetes 46:1725–1732

    PubMed  CAS  Google Scholar 

  • Kahn SE, Verchere CB, Andrikopoulos S, Asberry PJ, Leonetti DL, Wahl PW, Boyko EJ, Schwartz RS, Newell-Morris L, Fujimoto WY (1998) Reduced amylin release is a characteristic of impaired glucose tolerance and type 2 diabetes in Japanese Americans. Diabetes 47:640–645

    PubMed  CAS  Google Scholar 

  • Kajava AV, Aebi U, Steven AC (2005) The parallel superpleated β-structure as a model for amyloid fibrils of human amylin. J Mol Biol 348:247–252

    PubMed  CAS  Google Scholar 

  • Kapurniotu A, Bernhagen J, Greenfield N, Al-Abed Y, Teichberg S, Frank RW, Voelter W, Bucala R (1998) Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur J Biochem 251:208–216

    PubMed  CAS  Google Scholar 

  • Kapurniotu A, Schmauder A, Tenidis K (2002) Structure-based design and study of non-­amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. J Mol Biol 315:339–350

    PubMed  CAS  Google Scholar 

  • Kautzky-Willer A, Thomaseth K, Pacini G, Clodi M, Ludvik B, Streli C, Waldhausl W, Prager R (1994) Role of islet amyloid polypeptide secretion in insulin-resistant humans. Diabetologia 37:188–194

    PubMed  CAS  Google Scholar 

  • Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kapurniotu A (1999) Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol 287:781–796

    PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    PubMed  CAS  Google Scholar 

  • Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366

    PubMed  CAS  Google Scholar 

  • Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284:4230–4237

    PubMed  CAS  Google Scholar 

  • Khemtemourian L, Killian JA, Hoppener JW, Engel MF (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type 2 diabetes ­mellitus. Exp Diabetes Res 2008:421287

    PubMed  Google Scholar 

  • Khemtemourian L, Engel MF, Kruijtzer JA, Hoppener JW, Liskamp RM, Killian JA (2010) The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes. Eur Biophys J 39:1359–1364

    PubMed  CAS  Google Scholar 

  • King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431

    PubMed  CAS  Google Scholar 

  • Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187

    PubMed  CAS  Google Scholar 

  • Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide. Biochemistry 45:9496–9508

    PubMed  CAS  Google Scholar 

  • Knight JD, Williamson JA, Miranker AD (2008) Interaction of membrane-bound islet amyloid polypeptide with soluble and crystalline insulin. Protein Sci 17:1850–1856

    PubMed  CAS  Google Scholar 

  • Knorre A, Wagner M, Schaefer HE, Colledge WH, Pahl HL (2002) ΔF508-CFTR causes ­constitutive NF-κB activation through an ER-overload response in cystic fibrosis lungs. Biol Chem 383:271–282

    PubMed  CAS  Google Scholar 

  • Koda JE, Fineman M, Rink TJ, Dailey GE, Muchmore DB, Linarelli LG (1992) Amylin ­concentrations and glucose control. Lancet 339:1179–1180

    PubMed  CAS  Google Scholar 

  • Kolterman OG, Gottlieb A, Moyses C, Colburn W (1995) Reduction of postprandial ­hyperglycemia in subjects with IDDM by intravenous infusion of AC137, a human amylin analogue. Diabetes Care 18:1179–1182

    PubMed  CAS  Google Scholar 

  • Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2006) The aggregation potential of human amylin determines its cytotoxicity towards islet β-cells. FEBS J 273:3614–3624

    PubMed  CAS  Google Scholar 

  • Kong MF, King P, Macdonald IA, Stubbs TA, Perkins AC, Blackshaw PE, Moyses C, Tattersall RB (1997) Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 40:82–88

    PubMed  CAS  Google Scholar 

  • Kong MF, Stubbs TA, King P, Macdonald IA, Lambourne JE, Blackshaw PE, Perkins AC, Tattersall RB (1998) The effect of single doses of pramlintide on gastric emptying of two meals in men with IDDM. Diabetologia 41:577–583

    PubMed  CAS  Google Scholar 

  • Koo BW, Miranker AD (2005) Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid. Protein Sci 14:231–239

    PubMed  CAS  Google Scholar 

  • Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata T, Momoi MY, Kominami E, Kuida K, Sakamaki K, Yonehara S, Momoi T (2002) Polyglutamine aggregates stimulate ER stress ­signals and caspase-12 activation. Hum Mol Genet 11:1505–1515

    PubMed  CAS  Google Scholar 

  • Kudva YC, Mueske C, Butler PC, Eberhardt NL (1998) A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation. Biochem J 331(Pt 3):809–813

    PubMed  CAS  Google Scholar 

  • Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to β cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    PubMed  CAS  Google Scholar 

  • Lee SC, Hashim Y, Li JK, Ko GT, Critchley JA, Cockram CS, Chan JC (2001) The islet amyloid polypeptide (amylin) gene S20G mutation in Chinese subjects: evidence for associations with type 2 diabetes and cholesterol levels. Clin Endocrinol (Oxf) 54:541–546

    CAS  Google Scholar 

  • Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, ­secondary pathology, and premature death. Neuron 40:1087–1093

    PubMed  CAS  Google Scholar 

  • Levy M, Porat Y, Bacharach E, Shalev DE, Gazit E (2008) Phenolsulfonphthalein, but not phenolphthalein, inhibits amyloid fibril formation: implications for the modulation of amyloid ­self-assembly. Biochemistry 47:5896–5904

    PubMed  CAS  Google Scholar 

  • Lin CY, Gurlo T, Kayed R, Butler AE, Haataja L, Glabe CG, Butler PC (2007) Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes 56:1324–1332

    PubMed  CAS  Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104:8691–8696

    PubMed  CAS  Google Scholar 

  • Lopes DH, Colin C, Degaki TL, de Sousa AC, Vieira MN, Sebollela A, Martinez AM, Bloch C Jr, Ferreira ST, Sogayar MC (2004) Amyloidogenicity and cytotoxicity of recombinant mature human islet amyloid polypeptide (rhIAPP). J Biol Chem 279:42803–42810

    PubMed  CAS  Google Scholar 

  • Lopes DH, Meister A, Gohlke A, Hauser A, Blume A, Winter R (2007) Mechanism of islet ­amyloid polypeptide fibrillation at lipid interfaces studied by infrared reflection absorption ­spectroscopy. Biophys J 93:3132–3141

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) β-Amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756–760

    PubMed  CAS  Google Scholar 

  • Ludvik B, Kautzky-Willer A, Prager R, Thomaseth K, Pacini G (1997) Amylin: history and ­overview. Diabet Med 14(Suppl 2):S9–S13

    PubMed  Google Scholar 

  • Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 32:240–244

    PubMed  CAS  Google Scholar 

  • Lutz TA (2006) Amylinergic control of food intake. Physiol Behav 89:465–471

    PubMed  CAS  Google Scholar 

  • Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298:R1475–R1484

    PubMed  CAS  Google Scholar 

  • Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E (1995) Amylin decreases meal size in rats. Physiol Behav 58:1197–1202

    PubMed  CAS  Google Scholar 

  • Lutz TA, Althaus J, Rossi R, Scharrer E (1998a) Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. Am J Physiol 274:R1777–R1782

    PubMed  CAS  Google Scholar 

  • Lutz TA, Rossi R, Althaus J, Del Prete E, Scharrer E (1998b) Amylin reduces food intake more potently than calcitonin gene-related peptide (CGRP) when injected into the lateral brain ­ventricle in rats. Peptides 19:1533–1540

    PubMed  CAS  Google Scholar 

  • Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E (1998c) Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 19:309–317

    PubMed  CAS  Google Scholar 

  • Ma Z, Westermark GT, Sakagashira S, Sanke T, Gustavsson A, Sakamoto H, Engstrom U, Nanjo K, Westermark P (2001) Enhanced in vitro production of amyloid-like fibrils from mutant (S20G) islet amyloid polypeptide. Amyloid 8:242–249

    PubMed  CAS  Google Scholar 

  • Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A, Kaiser N, Donath MY (2001) Glucose induces β-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 50:1683–1690

    PubMed  CAS  Google Scholar 

  • Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    PubMed  CAS  Google Scholar 

  • Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M, Bugliani M, Boggi U, Vistoli F, Mosca F, Del Prato S (2004) Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab 89:5535–5541

    PubMed  CAS  Google Scholar 

  • Marchetti P, Bugliani M, Lupi R, Marselli L, Masini M, Boggi U, Filipponi F, Weir GC, Eizirik DL, Cnop M (2007) The endoplasmic reticulum in pancreatic β cells of type 2 diabetes patients. Diabetologia 50:2486–2494

    PubMed  CAS  Google Scholar 

  • Martinez-Alvarez RM, Volkoff H, Cueto JA, Delgado MJ (2008) Molecular characterization of calcitonin gene-related peptide (CGRP) related peptides (CGRP, amylin, adrenomedullin and adrenomedullin-2/intermedin) in goldfish (Carassius auratus): cloning and distribution. Peptides 29:1534–1543

    PubMed  CAS  Google Scholar 

  • Marzban L, Park K, Verchere CB (2003) Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol 38:347–351

    PubMed  CAS  Google Scholar 

  • Marzban L, Trigo-Gonzalez G, Zhu X, Rhodes CJ, Halban PA, Steiner DF, Verchere CB (2004) Role of β-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 53:141–148

    PubMed  CAS  Google Scholar 

  • Marzban L, Soukhatcheva G, Verchere CB (2005a) Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in β-cells. Endocrinology 146:1808–1817

    PubMed  CAS  Google Scholar 

  • Marzban L, Trigo-Gonzalez G, Verchere CB (2005b) Processing of pro-islet amyloid polypeptide in the constitutive and regulated secretory pathways of β cells. Mol Endocrinol 19:2154–2163

    PubMed  CAS  Google Scholar 

  • Matveyenko AV, Veldhuis JD, Butler PC (2006) Mechanisms of impaired fasting glucose and glucose intolerance induced by an approximate 50% pancreatectomy. Diabetes 55:2347–2356

    PubMed  CAS  Google Scholar 

  • May PC, Boggs LN, Fuson KS (1993) Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer’s disease amyloid-β neurotoxicity. J Neurochem 61:2330–2333

    PubMed  CAS  Google Scholar 

  • Mazzaglia A, Micali N, Scolaro LM, Attanasio F, Magri A, Pappalardo G, Villari V (2010) Aggregation properties of the peptide fragments derived from the 17–29 region of the human and rat IAPP: a comparative study with two PEG-conjugated variants of the human sequence. J Phys Chem B 114:705–713

    PubMed  CAS  Google Scholar 

  • McLean LR, Balasubramaniam A (1992) Promotion of β-structure by interaction of diabetes associated polypeptide (amylin) with phosphatidylcholine. Biochim Biophys Acta 1122:317–320

    PubMed  CAS  Google Scholar 

  • Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained β cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228

    PubMed  CAS  Google Scholar 

  • Meng F, Abedini A, Plesner A, Middleton CT, Potter KJ, Zanni MT, Verchere CB, Raleigh DP (2010) The sulfated triphenyl methane derivative acid fuchsin is a potent inhibitor of amyloid formation by human islet amyloid polypeptide and protects against the toxic effects of amyloid formation. J Mol Biol 400:555–566

    PubMed  CAS  Google Scholar 

  • Minn AH, Hafele C, Shalev A (2005) Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces β-cell apoptosis. Endocrinology 146:2397–2405

    PubMed  CAS  Google Scholar 

  • Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271:1988–1992

    PubMed  CAS  Google Scholar 

  • Mishra R, Bulic B, Sellin D, Jha S, Waldmann H, Winter R (2008) Small-molecule inhibitors of islet amyloid polypeptide fibril formation. Angew Chem Int Ed Engl 47:4679–4682

    PubMed  CAS  Google Scholar 

  • Mishra R, Geyer M, Winter R (2009a) NMR spectroscopic investigation of early events in IAPP amyloid fibril formation. Chembiochem 10:1769–1772

    PubMed  CAS  Google Scholar 

  • Mishra R, Sellin D, Radovan D, Gohlke A, Winter R (2009b) Inhibiting islet amyloid polypeptide fibril formation by the red wine compound resveratrol. Chembiochem 10:445–449

    PubMed  CAS  Google Scholar 

  • Mollet A, Gilg S, Riediger T, Lutz TA (2004) Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav 81:149–155

    PubMed  CAS  Google Scholar 

  • Moriarty DF, Raleigh DP (1999) Effects of sequential proline substitutions on amyloid formation by human amylin20–29. Biochemistry 38:1811–1818

    PubMed  CAS  Google Scholar 

  • Muthusamy K, Albericio F, Arvidsson PI, Govender P, Kruger HG, Maguire GE, Govender T (2010a) Microwave assisted SPPS of amylin and its toxicity of the pure product to RIN-5 F cells. Biopolymers 94:323–330

    PubMed  CAS  Google Scholar 

  • Muthusamy K, Arvidsson PI, Govender P, Kruger HG, Maguire GE, Govender T (2010b) Design and study of peptide-based inhibitors of amylin cytotoxicity. Bioorg Med Chem Lett 20:1360–1362

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403:98–103

    PubMed  CAS  Google Scholar 

  • Nanga RP, Brender JR, Xu J, Veglia G, Ramamoorthy A (2008) Structures of rat and human islet amyloid polypeptide IAPP(1–19) in micelles by NMR spectroscopy. Biochemistry 47:12689–12697

    PubMed  CAS  Google Scholar 

  • Nanga RP, Brender JR, Xu J, Hartman K, Subramanian V, Ramamoorthy A (2009) Three-dimensional structure and orientation of rat islet amyloid polypeptide protein in a membrane environment by solution NMR spectroscopy. J Am Chem Soc 131:8252–8261

    PubMed  CAS  Google Scholar 

  • Nishi M, Chan SJ, Nagamatsu S, Bell GI, Steiner DF (1989) Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc Natl Acad Sci USA 86:5738–5742

    PubMed  CAS  Google Scholar 

  • Nishi M, Bell GI, Steiner DF (1990) Islet amyloid polypeptide (amylin): no evidence of an abnormal precursor sequence in 25 type 2 (non-insulin-dependent) diabetic patients. Diabetologia 33:628–630

    PubMed  CAS  Google Scholar 

  • Novials A, Rojas I, Casamitjana R, Usac EF, Gomis R (2001) A novel mutation in islet amyloid polypeptide (IAPP) gene promoter is associated with type II diabetes mellitus. Diabetologia 44:1064–1065

    PubMed  CAS  Google Scholar 

  • O’Brien TD, Hayden DW, Johnson KH, Fletcher TF (1986) Immunohistochemical morphometry of pancreatic endocrine cells in diabetic, normoglycaemic glucose-intolerant and normal cats. J Comp Pathol 96:357–369

    PubMed  Google Scholar 

  • O’Brien TD, Butler PC, Westermark P, Johnson KH (1993) Islet amyloid polypeptide: a review of its biology and potential roles in the pathogenesis of diabetes mellitus. Vet Pathol 30:317–332

    PubMed  Google Scholar 

  • O’Brien TD, Butler AE, Roche PC, Johnson KH, Butler PC (1994) Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43:329–336

    PubMed  Google Scholar 

  • O’Brien TD, Butler PC, Kreutter DK, Kane LA, Eberhardt NL (1995) Human islet amyloid polypeptide expression in COS-1 cells. A model of intracellular amyloidogenesis. Am J Pathol 147:609–616

    PubMed  Google Scholar 

  • Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL (1990) Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest 85:973–976

    PubMed  CAS  Google Scholar 

  • Opie EL (1901) The relation of diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands of langerhans. J Exp Med 5:527–540

    PubMed  CAS  Google Scholar 

  • Orci L, Halban P, Perrelet A, Amherdt M, Ravazzola M, Anderson RG (1994) pH-Independent and -dependent cleavage of proinsulin in the same secretory vesicle. J Cell Biol 126:1149–1156

    PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    PubMed  CAS  Google Scholar 

  • Padrick SB, Miranker AD (2002) Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41:4694–4703

    PubMed  CAS  Google Scholar 

  • Park K, Verchere CB (2001) Identification of a heparin binding domain in the N-terminal cleavage site of pro-islet amyloid polypeptide. Implications for islet amyloid formation. J Biol Chem 276:16611–16616

    PubMed  CAS  Google Scholar 

  • Perseghin G, Caumo A, Arcelloni C, Benedini S, Lanzi R, Pagliato E, Sereni LP, Testolin G, Battezzati A, Comi G, Comola M, Luzi L (2003) Contribution of abnormal insulin secretion and insulin resistance to the pathogenesis of type 2 diabetes in myotonic dystrophy. Diabetes Care 26:2112–2118

    PubMed  CAS  Google Scholar 

  • Pirot P, Naamane N, Libert F, Magnusson NE, Orntoft TF, Cardozo AK, Eizirik DL (2007) Global profiling of genes modified by endoplasmic reticulum stress in pancreatic β cells reveals the early degradation of insulin mRNAs. Diabetologia 50:1006–1014

    PubMed  CAS  Google Scholar 

  • Porat Y, Kolusheva S, Jelinek R, Gazit E (2003) The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry 42:10971–10977

    PubMed  CAS  Google Scholar 

  • Porat Y, Mazor Y, Efrat S, Gazit E (2004) Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions. Biochemistry 43:14454–14462

    PubMed  CAS  Google Scholar 

  • Porte D Jr, Kahn SE (1989) Hyperproinsulinemia and amyloid in NIDDM. Clues to etiology of islet β-cell dysfunction? Diabetes 38:1333–1336

    PubMed  CAS  Google Scholar 

  • Porte D Jr, Kahn SE (1991) Mechanisms for hyperglycemia in type II diabetes mellitus: ­therapeutic implications for sulfonylurea treatment—an update. Am J Med 90:8S–14S

    PubMed  Google Scholar 

  • Porte D Jr, Kahn SE (2001) β-Cell dysfunction and failure in type 2 diabetes: potential ­mechanisms. Diabetes 50(Suppl 1):S160–S163

    PubMed  CAS  Google Scholar 

  • Potter KJ, Scrocchi LA, Warnock GL, Ao Z, Younker MA, Rosenberg L, Lipsett M, Verchere CB, Fraser PE (2009) Amyloid inhibitors enhance survival of cultured human islets. Biochim Biophys Acta 1790:566–574

    PubMed  CAS  Google Scholar 

  • Potter KJ, Abedini A, Marek P, Klimek AM, Butterworth S, Driscoll M, Baker R, Nilsson MR, Warnock GL, Oberholzer J, Bertera S, Trucco M, Korbutt GS, Fraser PE, Raleigh DP, Verchere CB (2010) Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci USA 107:4305–4310

    PubMed  CAS  Google Scholar 

  • Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27:190–198

    PubMed  CAS  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432

    PubMed  CAS  Google Scholar 

  • Radovan D, Opitz N, Winter R (2009) Fluorescence microscopy studies on islet amyloid polypeptide fibrillation at heterogeneous and cellular membrane interfaces and its inhibition by ­resveratrol. FEBS Lett 583:1439–1445

    PubMed  CAS  Google Scholar 

  • Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J (2004) Amylin ­receptor blockade stimulates food intake in rats. Am J Physiol Regul Integr Comp Physiol 287:R568–R574

    PubMed  CAS  Google Scholar 

  • Resmini E, Minuto F, Colao A, Ferone D (2009) Secondary diabetes associated with principal endocrinopathies: the impact of new treatment modalities. Acta Diabetol 46:85–95

    PubMed  CAS  Google Scholar 

  • Riediger T, Schmid HA, Young AA, Simon E (1999) Pharmacological characterisation of amylin-related peptides activating subfornical organ neurones. Brain Res 837:161–168

    PubMed  CAS  Google Scholar 

  • Riediger T, Schmid HA, Lutz T, Simon E (2001) Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol Regul Integr Comp Physiol 281:R1833–R1843

    PubMed  CAS  Google Scholar 

  • Riediger T, Zuend D, Becskei C, Lutz TA (2004) The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am J Physiol Regul Integr Comp Physiol 286:R114–R122

    PubMed  CAS  Google Scholar 

  • Rishton GM (2008) Aggregator compounds confound amyloid fibrillization assay. Nat Chem Biol 4:159–160

    PubMed  CAS  Google Scholar 

  • Ritzel RA, Butler PC (2003) Replication increases β-cell vulnerability to human islet amyloid polypeptide-induced apoptosis. Diabetes 52:1701–1708

    PubMed  CAS  Google Scholar 

  • Ritzel RA, Meier JJ, Lin CY, Veldhuis JD, Butler PC (2007) Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 56:65–71

    PubMed  CAS  Google Scholar 

  • Roberts AN, Leighton B, Todd JA, Cockburn D, Schofield PN, Sutton R, Holt S, Boyd Y, Day AJ, Foot EA et al (1989) Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc Natl Acad Sci USA 86:9662–9666

    PubMed  CAS  Google Scholar 

  • Rocken C, Linke RP, Saeger W (1992) Immunohistology of islet amyloid polypeptide in diabetes mellitus: semi-quantitative studies in a post-mortem series. Virchows Arch A Pathol Anat Histopathol 421:339–344

    PubMed  CAS  Google Scholar 

  • Rossi MC, Nicolucci A, Arcangeli A, Cimino A, De Bigontina G, Giorda C, Meloncelli I, Pellegrini F, Valentini U, Vespasiani G (2008) Baseline quality-of-care data from a quality-improvement program implemented by a network of diabetes outpatient clinics. Diabetes Care 31:2166–2168

    PubMed  Google Scholar 

  • Ryan G, Briscoe TA, Jobe L (2009) Review of pramlintide as adjunctive therapy in treatment of type 1 and type 2 diabetes. Drug Des Devel Ther 2:203–214

    PubMed  Google Scholar 

  • Saafi EL, Konarkowska B, Zhang S, Kistler J, Cooper GJ (2001) Ultrastructural evidence that apoptosis is the mechanism by which human amylin evokes death in RINm5F pancreatic islet β-cells. Cell Biol Int 25:339–350

    PubMed  CAS  Google Scholar 

  • Sakagashira S, Sanke T, Hanabusa T, Shimomura H, Ohagi S, Kumagaye KY, Nakajima K, Nanjo K (1996) Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 45:1279–1281

    PubMed  CAS  Google Scholar 

  • Sakagashira S, Hiddinga HJ, Tateishi K, Sanke T, Hanabusa T, Nanjo K, Eberhardt NL (2000) S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wild-type amylin. Am J Pathol 157:2101–2109

    PubMed  CAS  Google Scholar 

  • Sanke T, Bell GI, Sample C, Rubenstein AH, Steiner DF (1988) An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Biol Chem 263:17243–17246

    PubMed  CAS  Google Scholar 

  • Sanke T, Hanabusa T, Nakano Y, Oki C, Okai K, Nishimura S, Kondo M, Nanjo K (1991) Plasma islet amyloid polypeptide (amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34:129–132

    PubMed  CAS  Google Scholar 

  • Saraogi I, Hebda JA, Becerril J, Estroff LA, Miranker AD, Hamilton AD (2009) Synthetic α-helix mimetics as agonists and antagonists of islet amyloid polypeptide aggregation. Angew Chem Int Ed Engl 49:736–739

    Google Scholar 

  • Scherbaum WA (1998) The role of amylin in the physiology of glycemic control. Exp Clin Endocrinol Diabetes 106:97–102

    PubMed  CAS  Google Scholar 

  • Schubert D, Behl C, Lesley R, Brack A, Dargusch R, Sagara Y, Kimura H (1995) Amyloid ­peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci USA 92:1989–1993

    PubMed  CAS  Google Scholar 

  • Sciacca MF, Pappalardo M, Milardi D, Grasso DM, La Rosa C (2008) Calcium-activated membrane interaction of the islet amyloid polypeptide: implications in the pathogenesis of type II diabetes mellitus. Arch Biochem Biophys 477:291–298

    PubMed  CAS  Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 ­diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    PubMed  CAS  Google Scholar 

  • Scrocchi LA, Chen Y, Waschuk S, Wang F, Cheung S, Darabie AA, McLaurin J, Fraser PE (2002) Design of peptide-based inhibitors of human islet amyloid polypeptide fibrillogenesis. J Mol Biol 318:697–706

    PubMed  CAS  Google Scholar 

  • Scrocchi LA, Ha K, Chen Y, Wu L, Wang F, Fraser PE (2003) Identification of minimal peptide sequences in the (8–20) domain of human islet amyloid polypeptide involved in fibrillogenesis. J Struct Biol 141:218–227

    PubMed  CAS  Google Scholar 

  • Seino S (2001) S20G mutation of the amylin gene is associated with type II diabetes in Japanese. Study group of comprehensive analysis of genetic factors in diabetes mellitus. Diabetologia 44:906–909

    PubMed  CAS  Google Scholar 

  • Shastry BS (2003) Neurodegenerative disorders of protein aggregation. Neurochem Int 43:1–7

    PubMed  CAS  Google Scholar 

  • Smith RE, Ashiya M (2007) Antihypertensive therapies. Nat Rev Drug Discov 6:597–598

    PubMed  CAS  Google Scholar 

  • Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103:15806–15811

    PubMed  CAS  Google Scholar 

  • Smith PE, Brender JR, Ramamoorthy A (2009) Induction of negative curvature as a mechanism of cell toxicity by amyloidogenic peptides: the case of islet amyloid polypeptide. J Am Chem Soc 131:4470–4478

    PubMed  CAS  Google Scholar 

  • Sparr E, Engel MF, Sakharov DV, Sprong M, Jacobs J, de Kruijff B, Hoppener JW, Killian JA (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120

    PubMed  CAS  Google Scholar 

  • Stridsberg M, Wilander E (1991) Islet amyloid polypeptide (IAPP). A short review. Acta Oncol 30:451–456

    PubMed  CAS  Google Scholar 

  • Takano J, Tomioka M, Tsubuki S, Higuchi M, Iwata N, Itohara S, Maki M, Saido TC (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem 280:16175–16184

    PubMed  CAS  Google Scholar 

  • Tatarek-Nossol M, Yan LM, Schmauder A, Tenidis K, Westermark G, Kapurniotu A (2005) Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid- core-containing hexapeptide. Chem Biol 12:797–809

    PubMed  CAS  Google Scholar 

  • Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M, Weber M, Merkle ML, Voelter W, Brunner H, Kapurniotu A (2000) Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J Mol Biol 295:1055–1071

    PubMed  CAS  Google Scholar 

  • Thompson RG, Gottlieb A, Organ K, Koda J, Kisicki J, Kolterman OG (1997a) Pramlintide: a human amylin analogue reduced postprandial plasma glucose, insulin, and C-peptide concentrations in patients with type 2 diabetes. Diabet Med 14:547–555

    PubMed  CAS  Google Scholar 

  • Thompson RG, Pearson L, Kolterman OG (1997b) Effects of 4 weeks’ administration of ­pramlintide, a human amylin analogue, on glycaemia control in patients with IDDM: effects on plasma glucose profiles and serum fructosamine concentrations. Diabetologia 40:1278–1285

    PubMed  CAS  Google Scholar 

  • Tomiyama T, Kaneko H, Kataoka K, Asano S, Endo N (1997) Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem J 322(Pt 3):859–865

    PubMed  CAS  Google Scholar 

  • UKPDS (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Google Scholar 

  • Verchere CB, D’Alessio DA, Palmiter RD, Weir GC, Bonner-Weir S, Baskin DG, Kahn SE (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic β cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:3492–3496

    PubMed  CAS  Google Scholar 

  • Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segre AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Bostrom K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jorgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proenca C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparso T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    PubMed  CAS  Google Scholar 

  • Westermark P (1973) Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch A Pathol Pathol Anat 359:1–18

    PubMed  CAS  Google Scholar 

  • Westermark P, Wilander E (1978) The influence of amyloid deposits on the islet volume in ­maturity onset diabetes mellitus. Diabetologia 15:417–421

    PubMed  CAS  Google Scholar 

  • Westermark P, Wernstedt C, O’Brien TD, Hayden DW, Johnson KH (1987) Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol 127:414–417

    PubMed  CAS  Google Scholar 

  • Westermark P, Engstrom U, Westermark GT, Johnson KH, Permerth J, Betsholtz C (1989) Islet amyloid polypeptide (IAPP) and pro-IAPP immunoreactivity in human islets of Langerhans. Diabetes Res Clin Pract 7:219–226

    PubMed  CAS  Google Scholar 

  • Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 87:5036–5040

    PubMed  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    PubMed  Google Scholar 

  • Williamson JA, Miranker AD (2007) Direct detection of transient α-helical states in islet amyloid polypeptide. Protein Sci 16:110–117

    PubMed  CAS  Google Scholar 

  • Wiltzius JJ, Sievers SA, Sawaya MR, Eisenberg D (2009) Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci 18:1521–1530

    PubMed  CAS  Google Scholar 

  • Wookey PJ, Tikellis C, Du HC, Qin HF, Sexton PM, Cooper ME (1996) Amylin binding in rat renal cortex, stimulation of adenylyl cyclase, and activation of plasma renin. Am J Physiol 270:F289–F294

    PubMed  CAS  Google Scholar 

  • Yamada K, Yuan X, Ishiyama S, Nonaka K (1998) Glucose tolerance in Japanese subjects with S20G mutation of the amylin gene. Diabetologia 41:125

    PubMed  CAS  Google Scholar 

  • Yan LM, Tatarek-Nossol M, Velkova A, Kazantzis A, Kapurniotu A (2006) Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis. Proc Natl Acad Sci USA 103:2046–2051

    PubMed  CAS  Google Scholar 

  • Yonemoto IT, Kroon GJ, Dyson HJ, Balch WE, Kelly JW (2008) Amylin proprotein processing generates progressively more amyloidogenic peptides that initially sample the helical state. Biochemistry 47:9900–9910

    PubMed  CAS  Google Scholar 

  • Young A (2005) Amylin and the integrated control of nutrient influx. Adv Pharmacol 52:67–77

    PubMed  CAS  Google Scholar 

  • Young AA, Rink TJ, Wang MW (1993) Dose response characteristics for the hyperglycemic, hyperlactemic, hypotensive and hypocalcemic actions of amylin and calcitonin gene-related peptide-I (CGRP α) in the fasted, anaesthetized rat. Life Sci 52:1717–1726

    PubMed  CAS  Google Scholar 

  • Zhang S, Liu J, Saafi EL, Cooper GJ (1999) Induction of apoptosis by human amylin in RINm5F islet β-cells is associated with enhanced expression of p53 and p21WAF1/CIP1. FEBS Lett 455:315–320

    PubMed  CAS  Google Scholar 

  • Zhang P, Wang C, Gao K, Wang D, Mao J, An J, Xu C, Wu D, Yu H, Liu JO, Yu L (2010) The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ­ubiquitin-dependent degradation. J Biol Chem 285:8869–8879

    PubMed  CAS  Google Scholar 

  • Zhao WQ, Townsend M (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1792:482–496

    PubMed  CAS  Google Scholar 

  • Zhao H, Tuominen EK, Kinnunen PK (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43:10302–10307

    PubMed  CAS  Google Scholar 

  • Zraika S, Hull RL, Verchere CB, Clark A, Potter KJ, Fraser PE, Raleigh DP, Kahn SE (2010) Toxic oligomers and islet β cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 53:1046–1056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theri Leica Degaki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Degaki, T.L., Lopes, D.H.J., Sogayar, M.C. (2012). Cytotoxic Mechanisms of Islet Amyloid Polypeptide in the Pathogenesis of Type-2 Diabetes Mellitus (T2DM). In: Rahimi, F., Bitan, G. (eds) Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2774-8_7

Download citation

Publish with us

Policies and ethics