Skip to main content

Oligomers of α-Synuclein in the Pathogenesis of Parkinson’s Disease

  • Chapter
  • First Online:
  • 650 Accesses

Abstract

Misfolding and subsequent self-assembly of proteins into various aggregates is a common molecular mechanism in a number of important human diseases. Understanding the peculiarities of the protein-misfolding processes is essential for the design of successful drugs that inhibit or reverse protein aggregation, leading to protein-misfolding pathologies. Protein aggregation is a complex process characterized by remarkable polymorphism, where soluble amyloid oligomers, amyloid fibrils, and amorphous aggregates are found as the final products. This polymorphism is associated with existence of multiple, independent, and competing assembly pathways leading to aggregation. Irrespectively of aggregation mechanisms, soluble oligomers inevitably form during the self-association processes. Some of these oligomers are now considered major initiators of the pathogenic neurodegenerative cascades in the corresponding diseases. However, not all oligomers are equally harmful, and several amyloidogenic proteins form non-toxic oligomers, some of which are efficient fibrillation inhibitors. Unfortunately, information on the structural properties of soluble oligomers and mechanisms of their formation, inter-conversion, and toxicity is sparse. This chapter provides an overview of some topics related to soluble oligomers and several illustrative examples of toxic, non-toxic, productive, and off-pathway amyloid oligomers. The peculiarities of soluble oligomers of α-synuclein and its relation to the pathogenesis of Parkinson’s disease are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AD:

Alzheimer disease

ADDL:

Aβ-derived diffusible ligand

AFM:

Atomic-force microscopy

AL amyloidosis:

Light-chain-associated amyloidosis

ANS:

8-anilinonaphthalenesulfonic acid

APP:

β-amyloid precursor protein

CD:

Circular dichroism

CJD:

Creutzfeldt–Jakob disease

DLB:

Dementia with Lewy bodies

DLBD:

Diffuse Lewy-body disease

EM:

Electron microscopy

FFI:

Fatal familial insomnia

FTIR:

Fourier-transform infrared spectroscopy

GSS:

Gerstmann–Sträussler–Scheinker syndrome

HD:

Huntington disease

LCDD:

Light-chain-deposition disease

LBVAD:

Lewy-body variant of Alzheimer’s disease

LTP:

Long-term potentiation

MSA:

Multiple-system atrophy

MW:

Molecular weight

NFT:

Neurofibrillary tangle

NIID:

Neuronal intranuclear inclusion disease

PD:

Parkinson’s disease

PHF:

Paired helical filaments

PrPC :

Cellular form of the prion protein

PrPSc :

Scrapie form of the prion protein

SBMA:

Spinal and bulbar muscular atrophy

SCA:

Spinocerebellar ataxia

ThT:

Thioflavin T

References

  • Ahmad A, Uversky VN, Hong D, Fink AL (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675

    PubMed  CAS  Google Scholar 

  • Almeida CG, Takahashi RH, Gouras GK (2006) β-Amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin–proteasome system. J Neurosci 26:4277–4288

    PubMed  CAS  Google Scholar 

  • Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE (2006) Secondary structure of α-synuclein oligomers: characterization by Raman and atomic force microscopy. J Mol Biol 355:63–71

    PubMed  CAS  Google Scholar 

  • Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, Lam YH, Carrington D, Tew D, Kocak G, Volitakis I, Separovic F, Barrow CJ, Wade JD, Masters CL, Cherny RA, Curtain CC, Bush AI, Cappai R (2003) Neurotoxic, redox-competent Alzheimer’s β-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 278:42959–42965

    PubMed  CAS  Google Scholar 

  • Baskakov IV (2007) Branched chain mechanism of polymerization and ultrastructure of prion protein amyloid fibrils. FEBS J 274:3756–3765

    PubMed  CAS  Google Scholar 

  • Bellotti V, Mangione P, Stoppini M (1999) Biological activity and pathological implications of misfolded proteins. Cell Mol Life Sci 55:977–991

    PubMed  CAS  Google Scholar 

  • Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, Teplow DB, Shea J-E, Ruotolo BT, Robinson CV, Bowers MI (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem 1:326–331

    PubMed  CAS  Google Scholar 

  • Bhak G, Choe YJ, Paik SR (2009) Mechanism of amyloidogenesis: nucleation-dependent ­fibrillation versus double-concerted fibrillation. BMB Rep 42:541–551

    PubMed  CAS  Google Scholar 

  • Billings LM, Oddo S, Green KN, Mcgaugh JL, Laferla FM (2005) Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    PubMed  CAS  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335

    PubMed  CAS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    PubMed  CAS  Google Scholar 

  • Chen F, David D, Ferrari A, Gotz J (2004) Posttranslational modifications of tau—role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5:503–515

    PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT Jr (2000a) Accelerated oligomerization by Parkinson’s disease linked α-synuclein mutants. Ann NY Acad Sci 920:42–45

    PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000b) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang X, Farrag YW, Perry G, Bush AI (2000) Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J Biol Chem 275:19439–19442

    PubMed  CAS  Google Scholar 

  • Demager PP, Penke B, Walter R, Harkany T, Hartignny W (2002) Pathological peptide folding in Alzheimer’s disease and other conformational disorders. Curr Med Chem 9:1763–1780

    PubMed  Google Scholar 

  • Dev KK, Hofele K, Barbieri S, Buchman VL, Van Der Putten H (2003) Part II: α-Synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45:14–44

    PubMed  CAS  Google Scholar 

  • Di Monte DA, Lavasani M, Manning-Bog AB (2002) Environmental factors in Parkinson’s disease. Neurotoxicology 23:487–502

    PubMed  Google Scholar 

  • Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr (2002) Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41:10209–10217

    PubMed  CAS  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    PubMed  CAS  Google Scholar 

  • Eghiaian F (2005) Structuring the puzzle of prion propagation. Curr Opin Struct Biol 15:724–730

    PubMed  CAS  Google Scholar 

  • Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston JW (2004) Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann Neurol 55:174–179

    PubMed  CAS  Google Scholar 

  • Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345

    PubMed  CAS  Google Scholar 

  • Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    PubMed  CAS  Google Scholar 

  • Ferrone FA, Hofrichter J, Sunshine HR, Eaton WA (1980) Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys J 32:361–380

    PubMed  CAS  Google Scholar 

  • Fink AL (2006) The aggregation and fibrillation of α-synuclein. Acc Chem Res 39:628–634

    PubMed  CAS  Google Scholar 

  • Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283:29639–29643

    PubMed  CAS  Google Scholar 

  • Goldsbury C, Frey P, Olivieri V, Aebi U, Muller SA (2005) Multiple assembly pathways underlie amyloid-β fibril polymorphisms. J Mol Biol 352:282–298

    PubMed  CAS  Google Scholar 

  • Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NH, Radford SE (2005) Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J Mol Biol 351:850–864

    PubMed  CAS  Google Scholar 

  • Griffith JS (1967) Self-replication and scrapie. Nature 215:1043–1044

    PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    PubMed  CAS  Google Scholar 

  • Hong DP, Fink AL, Uversky VN (2008) Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383:214–223

    PubMed  CAS  Google Scholar 

  • Hong DP, Fink AL, Uversky VN (2009) Smoking and Parkinson’s disease: does nicotine affect α-synuclein fibrillation? Biochim Biophys Acta 1794:282–290

    PubMed  CAS  Google Scholar 

  • Hong DP, Han S, Fink AL, Uversky VN (2010) Characterization of the non-fibrillar α-synuclein oligomers. Prot Pept Lett 18:230–240

    Google Scholar 

  • Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA 100:6370–6375

    PubMed  CAS  Google Scholar 

  • Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Rapid self-assembly of α-synuclein observed by in situ atomic force microscopy. J Mol Biol 340:127–139

    PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999a) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    PubMed  CAS  Google Scholar 

  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI (1999b) Cu(II) potentiation of Alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116

    PubMed  CAS  Google Scholar 

  • Jain S, Udgaonkar JB (2008) Evidence for stepwise formation of amyloid fibrils by the mouse prion protein. J Mol Biol 382:1228–1241

    PubMed  CAS  Google Scholar 

  • Jo E, Mclaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) α-Synuclein membrane interactions and lipid specificity. J Biol Chem 275:34328–34334

    PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, Mcintire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    PubMed  CAS  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    PubMed  CAS  Google Scholar 

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224

    PubMed  CAS  Google Scholar 

  • Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17:48–57

    PubMed  CAS  Google Scholar 

  • Kovacech B, Novak M (2010) Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer’s disease. Curr Alzheimer Res 7:708–716

    PubMed  CAS  Google Scholar 

  • Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE (1996) Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081

    PubMed  CAS  Google Scholar 

  • Laferla FM, Oddo S (2005) Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med 11:170–176

    PubMed  CAS  Google Scholar 

  • Laferla FM, Green KN, Oddo S (2007) Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Lansbury PT Jr (2006) Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q Rev Biophys 39:167–201

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr (2002a) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291

    PubMed  CAS  Google Scholar 

  • Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002b) α-Synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102

    PubMed  CAS  Google Scholar 

  • Lee HJ, Choi C, Lee SJ (2002) Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671–678

    PubMed  CAS  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  Google Scholar 

  • Lichtenthaler SF (2010) α-Secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J Neurochem 116:10–21

    PubMed  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    PubMed  CAS  Google Scholar 

  • Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH (2004) Calcium(II) selectively induces α-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 13:3245–3252

    PubMed  CAS  Google Scholar 

  • Macario AJ, Conway De Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501

    PubMed  CAS  Google Scholar 

  • Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A (2006) Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res 54:197–201

    PubMed  CAS  Google Scholar 

  • Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    PubMed  CAS  Google Scholar 

  • Mccormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10:119–127

    PubMed  CAS  Google Scholar 

  • Medeiros R, Baglietto-Vargas D, Laferla FM (2010) The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther. doi:10.1111/j.1755-5949.2010.00177.x

  • Meng X, Munishkina LA, Fink AL, Uversky VN (2009) Molecular mechanisms underlying the flavonoid-induced inhibition of α-synuclein fibrillation. Biochemistry 48:8206–8224

    PubMed  CAS  Google Scholar 

  • Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349:583–596

    PubMed  CAS  Google Scholar 

  • Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794:375–397

    PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, Mcconlogue L (2000) High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058

    PubMed  CAS  Google Scholar 

  • Munishkina LA, Phelan C, Uversky VN, Fink AL (2003) Conformational behavior and aggregation of α-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 42:2720–2730

    PubMed  CAS  Google Scholar 

  • Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    PubMed  CAS  Google Scholar 

  • Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid β oligomers (Aβ1–42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797

    PubMed  CAS  Google Scholar 

  • Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29:528–535

    PubMed  CAS  Google Scholar 

  • Ohhashi Y, Ito K, Toyama BH, Weissman JS, Tanaka M (2010) Differences in prion strain conformations result from non-native interactions in a nucleus. Nat Chem Biol 6:225–230

    PubMed  CAS  Google Scholar 

  • Ono K, Condron MM, Teplow DB (2009) Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc Natl Acad Sci USA 106:14745–14750

    PubMed  CAS  Google Scholar 

  • Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) Metalloenzyme-like activity of Alzheimer’s disease β-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J Biol Chem 277:40302–40308

    PubMed  CAS  Google Scholar 

  • Peterson DW, Zhou H, Dahlquist FW, Lew J (2008) A soluble oligomer of tau associated with fiber formation analyzed by NMR. Biochemistry 47:7393–7404

    PubMed  CAS  Google Scholar 

  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307:262–265

    PubMed  CAS  Google Scholar 

  • Podesta A, Tiana G, Milani P, Manno M (2006) Early events in insulin fibrillization studied by time-lapse atomic force microscopy. Biophys J 90:589–597

    PubMed  CAS  Google Scholar 

  • Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, Selkoe DJ (1995) Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270:9564–9570

    PubMed  CAS  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    PubMed  CAS  Google Scholar 

  • Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL (2007) Effect of 4-hydroxy-2-nonenal modification on α-synuclein aggregation. J Biol Chem 282:5862–5870

    PubMed  CAS  Google Scholar 

  • Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    PubMed  CAS  Google Scholar 

  • Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    PubMed  CAS  Google Scholar 

  • Sacchettini JC, Kelly JW (2002) Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discov 1:267–275

    PubMed  CAS  Google Scholar 

  • Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, Takashima A (2007) Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci 25:3020–3029

    PubMed  Google Scholar 

  • Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J 277:1348–1358

    PubMed  CAS  Google Scholar 

  • Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, Deture M, Ramsden M, Mcgowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    PubMed  CAS  Google Scholar 

  • Saraiva MJ (2001) Transthyretin amyloidosis: a tale of weak interactions. FEBS Lett 498:201–203

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1986) Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer’s disease? Neurobiol Aging 7:425–432

    PubMed  CAS  Google Scholar 

  • Serpell LC, Sunde M, Blake CC (1997) The molecular basis of amyloidosis. Cell Mol Life Sci 53:871–887

    PubMed  CAS  Google Scholar 

  • Shikama Y, Kitazawa J, Yagihashi N, Uehara O, Murata Y, Yajima N, Wada R, Yagihashi S (2010) Localized amyloidosis at the site of repeated insulin injection in a diabetic patient. Intern Med 49:397–401

    PubMed  Google Scholar 

  • Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261

    PubMed  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302:841

    PubMed  CAS  Google Scholar 

  • Singleton A, Gwinn-Hardy K, Sharabi Y, Li ST, Holmes C, Dendi R, Hardy J, Crawley A, Goldstein DS (2004) Association between cardiac denervation and parkinsonism caused by α-synuclein gene triplication. Brain 127:768–772

    PubMed  Google Scholar 

  • Solomon A (1986) Clinical implications of monoclonal light chains. Semin Oncol 13:341–349

    PubMed  CAS  Google Scholar 

  • Souillac PO, Uversky VN, Millett IS, Khurana R, Doniach S, Fink AL (2002) Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid ­fibrillation. Evidence for an off-pathway oligomer at acidic pH. J Biol Chem 277:12666–12679

    PubMed  CAS  Google Scholar 

  • Souillac PO, Uversky VN, Fink AL (2003) Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry 42:8094–8104

    PubMed  CAS  Google Scholar 

  • Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275:18344–18349

    PubMed  CAS  Google Scholar 

  • Stevens PW, Raffen R, Hanson DK, Deng YL, Berrios-Hammond M, Westholm FA, Murphy C, Eulitz M, Wetzel R, Solomon A, Eulitz M, Wetzel R (1995) Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of light-chain amyloid proteins. Protein Sci 4:421–432

    PubMed  CAS  Google Scholar 

  • Tan SY, Pepys MB (1994) Amyloidosis. Histopathology 25:403–414

    PubMed  CAS  Google Scholar 

  • Terry RD (1996) The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 55:1023–1025

    PubMed  CAS  Google Scholar 

  • Urbanc B, Cruz L, Le R, Sanders J, Ashe KH, Duff K, Stanley HE, Irizarry MC, Hyman BT (2002) Neurotoxic effects of thioflavin S-positive amyloid deposits in transgenic mice and Alzheimer’s disease. Proc Natl Acad Sci USA 99:13990–13995

    PubMed  CAS  Google Scholar 

  • Uversky VN (2003) A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21:211–234

    PubMed  CAS  Google Scholar 

  • Uversky VN (2007) Neuropathology, biochemistry, and biophysics of α-synuclein aggregation. J Neurochem 103:17–37

    PubMed  CAS  Google Scholar 

  • Uversky VN (2008) α-Synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9:507–540

    PubMed  CAS  Google Scholar 

  • Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of α-synuclein. Curr Protein Pept Sci 10:483–499

    PubMed  CAS  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    PubMed  CAS  Google Scholar 

  • Uversky VN, Talapatra A, Gillespie JR, Fink AL (1999a) Protein deposits as the molecular basis of amyloidosis. I. Systemic amyloidoses. Med Sci Monitor 5:1001–1012

    CAS  Google Scholar 

  • Uversky VN, Talapatra A, Gillespie JR, Fink AL (1999b) Protein deposits as the molecular basis of amyloidosis. II. Localized amyloidosis and neurodegenerative disorders. Med Sci Monitor 5:1001–1012

    CAS  Google Scholar 

  • Uversky VN, Lee HJ, Li J, Fink AL, Lee SJ (2001a) Stabilization of partially folded conformation during α-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276:43495–43498

    PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001b) Evidence for a partially folded intermediate in α-synuclein fibril formation. J Biol Chem 276:10737–10744

    PubMed  CAS  Google Scholar 

  • Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, Lyubchenko YL, Fink AL (2005) Effects of nitration on the structure and aggregation of α-synuclein. Brain Res Mol Brain Res 134:84–102

    PubMed  CAS  Google Scholar 

  • Uversky VN, Fernandez A, Fink AL (2006) Structural and conformational prerequisites of amyloidogenesis. In: Uversky VN, Fink AL (eds) Protein misfolding, aggregation and conformational diseases. Springer Science  +  Business Media, LLC, New York

    Google Scholar 

  • Verdone G, Corazza A, Viglino P, Pettirossi F, Giorgetti S, Mangione P, Andreola A, Stoppini M, Bellotti V, Esposito G (2002) The solution structure of human β2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci 11:487–499

    PubMed  CAS  Google Scholar 

  • Vestergaard B, Groenning M, Roessle M, Kastrup JS, Van De Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5:e134

    PubMed  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002b) Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30:552–557

    PubMed  CAS  Google Scholar 

  • Wegner A, Savko P (1982) Fragmentation of actin filaments. Biochemistry 21:1909–1913

    PubMed  CAS  Google Scholar 

  • Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2002) Amyloid fibril protein nomenclature—2002. Amyloid 9:197–200

    PubMed  CAS  Google Scholar 

  • Wetzel R, Shivaprasad S, Williams AD (2007) Plasticity of amyloid fibrils. Biochemistry 46:1–10

    PubMed  CAS  Google Scholar 

  • Yamin G, Uversky VN, Fink AL (2003) Nitration inhibits fibrillation of human α-synuclein in vitro by formation of soluble oligomers. FEBS Lett 542:147–152

    PubMed  CAS  Google Scholar 

  • Zhou W, Gallagher A, Hong DP, Long C, Fink AL, Uversky VN (2009) At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to α-synuclein and prevents its fibrillation. J Mol Biol 388:597–610

    PubMed  CAS  Google Scholar 

  • Zhou W, Long C, Reaney SH, Di Monte DA, Fink AL, Uversky VN (2010) Methionine oxidation stabilizes non-toxic oligomers of α-synuclein through strengthening the auto-inhibitory intra-molecular long-range interactions. Biochim Biophys Acta 1802:322–330

    PubMed  CAS  Google Scholar 

  • Zhu M, Li J, Fink AL (2003) The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278:40186–40197

    PubMed  CAS  Google Scholar 

  • Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL (2004) The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. J Biol Chem 279:26846–26857

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Program of the Russian Academy of Sciences for the “Molecular and cellular biology” (V.N.U.), by grants R01 LM007688-01A1 (V.N.U.) and GM071714-01A2 (V.N.U.) from the National Institutes of Health and the grant EF 0849803 (V.N.U.) from the National Science Foundation. We gratefully acknowledge support of the IUPUI Signature Centers Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Uversky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hong, DP., Zhou, W., Santner, A., Uversky, V.N. (2012). Oligomers of α-Synuclein in the Pathogenesis of Parkinson’s Disease. In: Rahimi, F., Bitan, G. (eds) Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2774-8_6

Download citation

Publish with us

Policies and ethics