Skip to main content

Abstract

Amyloid formation from the protein precursor β2-microglobulin (β2m) is implicated in the human pathology dialysis-related amyloidosis (DRA). The first report of the clinical symptoms of the pathology was noted in 1975, but the amyloid basis for the pathology was not realized until 1980, and the precursor protein was identified as β2m in 1985 (Warren and Otieno, Postgrad Med J 51:450–452, 1975; Assenat et al., Nouv Presse Med 9:1715, 1980; Gejyo et al., Biochem Biophys Res Commun 129:701–706, 1985). Here we discuss the physiological role of β2m as a component of the major histocompatibility complex class I (MHC I); the clinical implications of DRA; the current knowledge of β2m aggregation resulting from in vitro models; and how this has informed our understanding of the molecular basis of the disease. In particular, the role of toxic oligomers in the pathology of DRA is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Uchita K, Orita H, Kamimura M, Oda M, Hasegawa H, Kobata H, Fukunishi M, Shimazaki M, Abe T, Akizawa T, Ahmad S (2003) Effect of β2-microglobulin adsorption column on dialysis-related amyloidosis. Kidney Int 64:1522–1528

    Article  PubMed  Google Scholar 

  • Alexandrescu AT (2005) Amyloid accomplices and enforcers. Protein Sci 14:1–12

    Article  PubMed  CAS  Google Scholar 

  • Antwi K, Mahar M, Srikanth R, Olbris MR, Tyson JF, Vachet RW (2008) Cu(II) organizes β2-microglobulin oligomers but is released upon amyloid formation. Protein Sci 17:748–759

    Article  PubMed  CAS  Google Scholar 

  • Assenat H, Calemard E, Charra B, Laurent G, Terrat JC, Vanel T (1980) Hemodialysis: carpal ­tunnel syndrome and amyloid substance. Nouv Presse Med 9:1715

    PubMed  CAS  Google Scholar 

  • Athanasou NA, Puddle B, Sallie B (1995) Highly sulfated glycosaminoglycans in articular cartilage and other tissues containing β2-microglobulin dialysis amyloid deposits. Nephrol Dial Transplant 10:1672–1678

    PubMed  CAS  Google Scholar 

  • Bandini S, Bergesio F, Conti P, Mancini G, Cerretini C, Cirami C, Rosati A, Caselli GM, Arbustini E, Merlini G, Ficarra G, Salvadori M (2001) Nodular macroglossia with combined light chain and β2-microglobulin deposition in a long-term dialysis patient. J Nephrol 14:128–131

    PubMed  CAS  Google Scholar 

  • Bardin T, Kuntz D (1987) The arthropathy of chronic haemodialysis. Clin Exp Rheumatol 5:379–386

    PubMed  CAS  Google Scholar 

  • Bardin T, Lebaildarne JL, Zingraff J, Laredo JD, Voisin MC, Kreis H, Kuntz D (1995) Dialysis arthropathy—outcome after renal-transplantation. Am J Med 99:243–248

    Article  PubMed  CAS  Google Scholar 

  • Baz M, Durand C, Ragon A, Jaber K, Andrieu D, Merzouk T, Purgus R, Olmer M, Reynier JP, Berland Y (1991) Using ultrapure water in haemodialysis delays Carpal-Tunnel Syndrome. Int J Artif Organs 14:681–685

    PubMed  CAS  Google Scholar 

  • Bellotti V, Stoppini M, Mangione P, Sunde M, Robinson C, Asti L, Brancaccio D, Ferri G (1998) β2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur J Biochem 258:61–67

    Article  PubMed  CAS  Google Scholar 

  • Bunka DHJ, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596

    Article  PubMed  CAS  Google Scholar 

  • Bunka DHJ, Mantle BJ, Morten IJ, Tennent GA, Radford SE, Stockley PG (2007) Production and characterization of RNA aptamers specific for amyloid fibril epitopes. J Biol Chem 282:34500–34509

    Article  PubMed  CAS  Google Scholar 

  • Calabrese MF, Miranker AD (2007) Formation of a stable oligomer of β2-microglobulin requires only transient encounter with Cu(II). J Mol Biol 367:1–7

    Article  PubMed  CAS  Google Scholar 

  • Calabrese MF, Eakin CM, Wang JM, Miranker AD (2008) A regulatable switch mediates self-association in an immunoglobulin fold. Nat Struct Mol Biol 15:965–971

    Article  PubMed  CAS  Google Scholar 

  • Campistol JM (2001) Dialysis-related amyloidosis after renal transplantation. Semin Dial 14:99–102

    Article  PubMed  CAS  Google Scholar 

  • Canaud BJM (2009) Changing paradigms of renal replacement therapy in chronic kidney disease patients: ultrapure dialysis fluid and high-efficiency hemodiafiltration for all? Kidney Int 76:591–593

    Article  PubMed  Google Scholar 

  • Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL (2001) 26 S proteasomes and ­immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J 20:2357–2366

    Article  PubMed  CAS  Google Scholar 

  • Charra B, Calemard E, Laurent G (1988) Chronic renal-failure treatment duration and mode—their relevance to the late dialysis periarticular syndrome. Blood Purif 6:117–124

    Article  PubMed  CAS  Google Scholar 

  • Chary-Valckenaere I, Kessler M, Mainard D, Schertz L, Chanliau J, Champigneulle J, Pourel J, Gaucher A, Netter P (1998) Amyloid and non-amyloid carpal tunnel syndrome in patients receiving chronic renal dialysis. J Rheumatol 25:1164–1170

    PubMed  CAS  Google Scholar 

  • Cheung AK, Leypoldt JK (1997) The hemodialysis membranes: a historical perspective, current state and future prospect. Semin Nephrol 17:196–213

    PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, De Lorenzi E, Grossi S, Mangione P, Giorgetti S, Caccialanza G, Dobson CM, Merlini G, Ramponi G, Bellotti V (2001) A partially structured species of β2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J Biol Chem 276:46714–46721

    Article  PubMed  CAS  Google Scholar 

  • Corlin DB, Johnsen CK, Nissen MH, Heegaard NHH (2009) A β2-microglobulin cleavage variant fibrillates at near-physiological pH. Biochem Biophys Res Commun 381:187–191

    Article  PubMed  CAS  Google Scholar 

  • Cresswell P, Ackerman AL, Giodini A, Peaper DR, Wearsch PA (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 207:145–157

    Article  PubMed  CAS  Google Scholar 

  • Davison AM (1995) β2-microglobulin and amyloidosis: who is at risk? Nephrol Dial Transplant 10:48–51

    PubMed  Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) Magic angle spinning NMR analysis of β2-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132:10414–10423

    Article  PubMed  CAS  Google Scholar 

  • Destrihou CV, Jadoul M, Malghem J, Maldague B, Jamart J (1991) Effect of dialysis membrane and patients age on signs of dialysis-related amyloidosis. Kidney Int 39:1012–1019

    Article  Google Scholar 

  • Destrihou CV, Floege J, Jadoul M, Koch KM (1994) Amyloidosis and its relationship to different dialyzers. Nephrol Dial Transplant 9:156–161

    Google Scholar 

  • Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM (2009) Insights into MHC Class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32

    Article  PubMed  CAS  Google Scholar 

  • Drueke TB, Massy ZA (2009) β2-microglobulin. Semin Dial 22:378–380

    Article  PubMed  Google Scholar 

  • Eakin CM, Miranker AD (2005) From chance to frequent encounters: origins of β2-microglobulin fibrillogenesis. Biochim Biophys Acta 1753:92–99

    PubMed  CAS  Google Scholar 

  • Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of β2-microglobulin. Biochemistry 41:10646–10656

    Article  PubMed  CAS  Google Scholar 

  • Eakin CM, Attenello FJ, Morgan CJ, Miranker AD (2004) Oligomeric assembly of native-like precursors precedes amyloid formation by β2-microglobulin. Biochemistry 43:7808–7815

    Article  PubMed  CAS  Google Scholar 

  • Eakin CM, Berman AJ, Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13:202–208

    Article  PubMed  CAS  Google Scholar 

  • Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16:673–677

    Article  PubMed  CAS  Google Scholar 

  • Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234

    Article  PubMed  CAS  Google Scholar 

  • Eichner T, Radford SE (2009) A generic mechanism of β2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. J Mol Biol 386:1312–1326

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Michelutti R, Verdone G, Viglino P, Hernandez H, Robinson CV, Amoresano A, Dal Piaz F, Monti M, Pucci P, Mangione P, Stoppini M, Merlini G, Ferri G, Bellotti V (2000) Removal of the N-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci 9:831–845

    Article  PubMed  CAS  Google Scholar 

  • Esposito G, Ricagno S, Corazza A, Rennella E, Gümral D, Mimmi MC, Betto E, Pucillo CE, Fogolari F, Viglino P, Raimondi S, Giorgetti S, Bolognesi B, Merlini G, Stoppini M, Bolognesi M, Bellotti V (2008) The controlling roles of Trp60 and Trp95 in β2-microglobulin function, folding and amyloid aggregation properties. J Mol Biol 378:887–897

    Article  PubMed  CAS  Google Scholar 

  • Fabian H, Gast K, Laue M, Misselwitz R, Uchanska-Ziegler B, Ziegler A, Naumann D (2008) Early stages of misfolding and association of β2-microglobulin: insights from infrared ­spectroscopy and dynamic light scattering. Biochemistry 47:6895–6906

    Article  PubMed  CAS  Google Scholar 

  • Ferreira A, Urena P, Ang KS, Simon P, Morieux C, Souberbielle JC, Devernejoul MC, Drueke TB (1995) Relationship between serum β2-microglobulin, bone histology, and dialysis membranes in uremic patients. Nephrol Dial Transplant 10:1701–1707

    PubMed  CAS  Google Scholar 

  • Floege J, Ehlerding G (1996) β2-Microglobulin-associated amyloidosis—discussion. Nephron 72:9–26

    Article  PubMed  CAS  Google Scholar 

  • Floege J, Ketteler M (2001) β2-Microglobulin-derived amyloidosis: an update. Kidney Int Suppl 59:S164–S171

    Article  Google Scholar 

  • Floege J, Bartsch A, Schulze M, Shaldon S, Koch KM, Smeby LC (1991) Clearance and synthesis rates of β2-microglobulin in patients undergoing hemodialysis and in normal subjects. J Lab Clin Med 118:153–165

    PubMed  CAS  Google Scholar 

  • Fuchs D, Norkrans G, Wejstal R, Reibnegger G, Weiss G, Weiland O, Schvarcz R, Fryden A, Wachter H (1992) Changes of serum neopterin, β2-microglobulin and interferon-γ in patients with chronic hepatitis C treated with interferon-α2b. Eur J Med 1:196–200

    PubMed  CAS  Google Scholar 

  • Furuyoshi S, Nakatani M, Taman J, Kutsuki H, Takata S, Tani N (1998) New adsorption column (Lixelle) to eliminate β2-microglobulin for direct hemoperfusion. Ther Apher 2:13–17

    Article  PubMed  CAS  Google Scholar 

  • Garbar C, Jadoul M, Noel H, De Strihou CV (2000) Histologic characteristics of sternoclavicular β2-microglobulin amyloidosis—reply. Kidney Int 57:346–347

    Article  Google Scholar 

  • Garcia KC, Adams EJ (2005) How the T cell receptor sees antigen—a structural view. Cell 122:333–336

    Article  PubMed  CAS  Google Scholar 

  • Geddes AJ, Parker KD, Atkins EDT, Beighton E (1968) Cross-β conformation in proteins. J Mol Biol 32:343–358

    Article  PubMed  CAS  Google Scholar 

  • Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T, Kataoka H, Suzuki M, Hirasawa Y, Shirahama T, Cohen AS, Schmid K (1985) A new form of amyloid protein associated with chronic hemodialysis was identified as β2-microglobulin. Biochem Biophys Res Commun 129:701–706

    Article  PubMed  CAS  Google Scholar 

  • Gejyo F, Homma N, Suzuki Y, Arakawa M (1986a) Serum levels of β2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med 314:585–586

    Article  PubMed  CAS  Google Scholar 

  • Gejyo F, Odani S, Yamada T, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y, Suzuki M, Arakawa M (1986b) β2-Microglobulin—a new form of amyloid protein associated with chronic hemodialysis. Kidney Int 30:385–390

    Article  PubMed  CAS  Google Scholar 

  • Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC (2001) Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci USA 98:6794–6799

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti S, Raimondi S, Cassinelli S, Bucciantini M, Stefani M, Gregorini G, Albonico G, Moratti R, Montagna G, Stoppini M, Bellotti V (2009) β2-Microglobulin is potentially neurotoxic, but the blood brain barrier is likely to protect the brain from its toxicity. Nephrol Dial Transplant 24:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Goldsbury C, Frey P, Olivieri V, Aebi U, Muller SA (2005) Multiple assembly pathways underlie amyloid-β fibril polymorphisms. J Mol Biol 352:282–298

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Wu C, Rastegar M, Safa A (2002) β2-Microglobulin induces apoptosis in CCRF-HSB-2 leukemia cells by molecular mechanisms different than doxorubicin- and taxol-induced apoptosis mechanisms. Eur J Cancer 38:S167

    Google Scholar 

  • Gordon J, Wu CH, Rastegar M, Safa AR (2003) β2-Microglobulin induces caspase-dependent apoptosis in the CCRF-HSB-2 human leukemia cell line independently of the caspase-3, -8 and -9 pathways but through increased reactive oxygen species. Int J Cancer 103:316–327

    Article  PubMed  CAS  Google Scholar 

  • Gorevic PD, Casey TT, Stone WJ, Diraimondo CR, Prelli FC, Frangione B (1985) β2-Microglobulin is an amyloidogenic protein in man. J Clin Invest 76:2425–2429

    Article  PubMed  CAS  Google Scholar 

  • Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NH, Radford SE (2005) Competing pathways determine fibril morphology in the self-assembly of β2-microglobulin into amyloid. J Mol Biol 351:850–864

    Article  PubMed  CAS  Google Scholar 

  • Gosal WS, Myers SL, Radford SE, Thomson NH (2006) Amyloid under the atomic force microscope. Protein Pept Lett 13:261–270

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  PubMed  CAS  Google Scholar 

  • Hakim RM, Wingard RL, Husni L, Parker RA, Parker TF (1996) The effect of membrane biocompatibility on plasma β2-microglobulin levels in chronic hemodialysis patients. J Am Soc Nephrol 7:472–478

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Tsutsumi-Yasuhara S, Ookoshi T, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y, Naiki H (2008) Growth of β2-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral pH. Biochem J 416:307–315

    Article  PubMed  CAS  Google Scholar 

  • Haydar SN, Yun HED, Staal RGW, Hirst WD (2009) Small-molecule protein–protein interaction inhibitors as therapeutic agents for neurodegenerative diseases: recent progress and future directions. Annu Rep Med Chem 44:51–69

    Article  CAS  Google Scholar 

  • He X, Giurleo JT, Talaga DS (2010) Role of small oligomers on the amyloidogenic aggregation free-energy landscape. J Mol Biol 395:134–154

    Article  PubMed  CAS  Google Scholar 

  • Hirakura Y, Kagan BL (2001) Pore formation by β2-microglobulin: a mechanism for the pathogenesis of dialysis associated amyloidosis. Amyloid 8:94–100

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson JP (2009) β2-Microglobulin from function to fibril: an investigation using hydrogen/deuterium exchange mass spectrometry. PhD thesis, University of Leeds, Leeds

    Google Scholar 

  • Hodkinson JP, Jahn TR, Radford SE, Ashcroft AE (2009) HDX-ESI-MS reveals enhanced conformational dynamics of the amyloidogenic protein β2-microglobulin upon release from the MHC-1. J Am Soc Mass Spectrom 20:278–286

    Article  PubMed  CAS  Google Scholar 

  • Horl WH (2004) β2-Microglobulin amyloidosis. In: Replacement of renal function by dialysis. Kluwer Academic Publishers, Dordrecht/London

    Google Scholar 

  • Hoshino M, Katou H, Hagihara Y, Hasegawa K, Naiki H, Goto Y (2002) Mapping the core of the β2-microglobulin amyloid fibril by H/D exchange. Nat Struct Biol 9:332–336

    Article  PubMed  CAS  Google Scholar 

  • Hou FF, Owen WF (2002) β2-Microglobulin amyloidosis: role of monocytes/macrophages. Curr Opin Nephrol Hypertens 11:417–421

    Article  PubMed  Google Scholar 

  • Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci USA 94:1896–1901

    Article  PubMed  CAS  Google Scholar 

  • Imani F, Horii Y, Suthanthiran M, Skolnik EY, Makita Z, Sharma V, Sehajpal P, Vlassara H (1993) Advanced glycosylation endproduct-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon-γ—role in tissue remodeling. J Exp Med 178:2165–2172

    Article  PubMed  CAS  Google Scholar 

  • Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D (2004) An amyloid-forming segment of β2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci USA 101:10584–10589

    Article  PubMed  CAS  Google Scholar 

  • Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of β2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci USA 103:18119–18124

    Article  PubMed  CAS  Google Scholar 

  • Jadoul M, Drueke T, Zingraff J, Destrihou CV (1997a) Does dialysis-related amyloidosis regress after transplantation? Nephrol Dial Transplant 12:655–657

    Article  PubMed  CAS  Google Scholar 

  • Jadoul M, Garbar C, Noel H, Sennesael J, Vanholder R, Bernaert P, Rorive G, Hanique G, Destrihou CV (1997b) Histological prevalence of β2-microglobulin amyloidosis in hemodialysis: a prospective post-mortem study. Kidney Int 51:1928–1932

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Radford SE (2005) The Yin and Yang of protein folding. FEBS J 272:5962–5970

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201

    Article  PubMed  CAS  Google Scholar 

  • Jahn TR, Tennent GA, Radford SE (2008) A common β-sheet architecture underlies in vitro and in vivo β2-microglobulin amyloid fibrils. J Biol Chem 283:17279–17286

    Article  PubMed  CAS  Google Scholar 

  • Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. Proc Natl Acad Sci USA 99:9196–9201

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Smith DP, Radford SE (2003a) Role of the N- and C-terminal strands of β2-microglobulin in amyloid formation at neutral pH. J Mol Biol 330:935–941

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Manning J, Kad NM, Radford SE (2003b) Amyloid-forming peptides from β2-microglobulin—insights into the mechanism of fibril formation in vitro. J Mol Biol 325:249–257

    Article  PubMed  CAS  Google Scholar 

  • Kad NM, Thomson NH, Smith DP, Smith DA, Radford SE (2001) β2-Microglobulin and its deamidated variant, N17D form amyloid fibrils with a range of morphologies in vitro. J Mol Biol 313:559–571

    Article  PubMed  CAS  Google Scholar 

  • Kameda A, Hoshino M, Higurashi T, Takahashi S, Naiki H, Goto Y (2005) Nuclear magnetic resonance characterization of the refolding intermediate of β2-microglobulin trapped by non-native prolyl peptide bond. J Mol Biol 348:383–397

    Article  PubMed  CAS  Google Scholar 

  • Kardos J, Okuno D, Kawai T, Hagihara Y, Yumoto N, Kitagawa T, Závodszky P, Naiki H, Goto Y (2005) Structural studies reveal that the diverse morphology of β2-microglobulin aggregates is a reflection of different molecular architectures. Biochim Biophys Acta 1753:108–120

    PubMed  CAS  Google Scholar 

  • Karlsson FA, Groth T, Sege K, Wibell L, Peterson PA (1980) Turnover in humans of β2-microglobulin—the constant chain of HLA-antigens. Eur J Clin Invest 10:293–300

    Article  PubMed  CAS  Google Scholar 

  • Kay J (1997) β2-Microglobulin amyloidosis. Amyloid 4:187–211

    Article  CAS  Google Scholar 

  • Kazama JJ, Yamamoto S, Takahashi N, Ito Y, Maruyama H, Narita I, Gejyo F (2006) Aβ-2 M-amyloidosis and related bone diseases. J Bone Miner Metab 24:182–184

    Article  PubMed  CAS  Google Scholar 

  • Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    Article  PubMed  CAS  Google Scholar 

  • Kelly JW (2002) Towards an understanding of amyloidogenesis. Nat Struct Biol 9:323–325

    Article  PubMed  CAS  Google Scholar 

  • Khan AR, Baker BM, Ghos P, Biddison WE, Wiley DC (2000) The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J Immunol 164:6398–6405

    PubMed  CAS  Google Scholar 

  • Kihara M, Chatani E, Iwata K, Yamamoto K, Matsuura T, Nakagawa A, Naiki H, Goto Y (2006) Conformation of amyloid fibrils of β2-microglobulin probed by tryptophan mutagenesis. J Biol Chem 281:31061–31069

    Article  PubMed  CAS  Google Scholar 

  • Koda Y, Nishi S, Miyazaki S, Haginoshita S, Sakurabayashi T, Suzuki M, Sakai S, Yuasa Y, Hirasawa Y, Nishi T (1997) Switch from conventional to high-flux membrane reduces the risk of carpal tunnel syndrome and mortality of hemodialysis patients. Kidney Int 52:1096–1101

    Article  PubMed  CAS  Google Scholar 

  • Kozhukh GV, Hagihara Y, Kawakami T, Hasegawa K, Naiki H, Goto Y (2002) Investigation of a peptide responsible for amyloid fibril formation of β2-microglobulin by Achromobacter protease I. J Biol Chem 277:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Kutsuki H (2005) β2-Microglobulin-selective direct hemoperfusion column for the treatment of dialysis-related amyloidosis. Biochim Biophys Acta 1753:141–145

    PubMed  CAS  Google Scholar 

  • Ladner CL, Chen M, Smith DP, Platt GW, Radford SE, Langen R (2010) Stacked sets of parallel, in register β-strands in β2-microglobulin amyloid fibrils revealed by site-directed spin labelling and chemical labelling. J Biol Chem 285:17137–17147

    Article  PubMed  CAS  Google Scholar 

  • Leypoldt JK, Cheung AK, Carroll CE, Stannard DC, Pereira BJG, Agodoa LY, Port FK (1999) Effect of dialysis membranes and middle molecule removal on chronic hemodialysis patient survival. Am J Kidney Dis 33:349–355

    Article  PubMed  CAS  Google Scholar 

  • Lin CL, Yang CW, Chiang CC, Chang CT, Huang CC (2001) Long-term on-line hemodiafiltration reduces predialysis β2-microglobulin levels in chronic hemodialysis patients. Blood Purif 19:301–307

    Article  PubMed  CAS  Google Scholar 

  • Linke RP, Hampl H, Bartelschwarze S, Eulitz M (1987) β2-Microglobulin: different fragments and polymers thereof in synovial amyloid in long-term hemodialysis. Biol Chem 368:137–144

    CAS  Google Scholar 

  • Linke RP, Eulitz M, Hampl H, Lobeck H (1989a) Altered β2-microglobulin in amyloid deposits of patients on long-term hemodialysis. Kidney Int 35:254

    Google Scholar 

  • Linke RP, Hampl H, Lobeck H, Ritz E, Bommer J, Waldherr R, Eulitz M (1989b) Lysine-specific cleavage of β2-microglobulin in amyloid deposits associated with Haemodialysis. Kidney Int 36:675–681

    Article  PubMed  CAS  Google Scholar 

  • Linke RP, Schaeffer J, Gielow P, Lindner P, Lottspeich F, Pluckthun A, Weiss EH (2000) Production of recombinant human β2-microglobulin for scintigraphic diagnosis of amyloidosis in uremia and hemodialysis. Eur J Biochem 267:627–633

    Article  PubMed  CAS  Google Scholar 

  • Ljunggren HG, Stam NJ, Ohlen C, Neefjes JJ, Hoglund P, Heemels MT, Bastin J, Schumacher TNM, Townsend A, Karre K, Ploegh HL (1990) Empty MHC class-I molecules come out in the cold. Nature 346:476–480

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Marcelli D, Conte F, Limido A, Malberti F, Spotti D, Trapianto RLD (1999) Comparison of mortality in ESRD patients on convective and diffusive extracorporeal treatments. Kidney Int 55:286–293

    Article  PubMed  CAS  Google Scholar 

  • Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320

    Article  PubMed  CAS  Google Scholar 

  • Margittai M, Langen R (2006) Spin labeling analysis of amyloids and other protein aggregates. Methods Enzymol 413:122–139

    Article  PubMed  CAS  Google Scholar 

  • Mccarthy JT, Williams AW, Johnson WJ (1994) Serum β2-microglobulin concentration in dialysis patients—importance of intrinsic renal function. J Lab Clin Med 123:495–505

    PubMed  CAS  Google Scholar 

  • McParland VJ (2001) Conformational changes of β2-microglobulin and implications for amyloid fibril formation. PhD thesis, University of Leeds, Leeds

    Google Scholar 

  • McParland VJ, Kad NM, Kalverda AP, Brown A, Kirwin-Jones P, Hunter MG, Sunde M, Radford SE (2000) Partially unfolded states of β2-microglobulin and amyloid formation in vitro. Biochemistry 39:8735–8746

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt J, Sachse C, Hortschansky P, Grigorieff N, Fandrich M (2009) Aβ1–40 fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J Mol Biol 386:869–877

    Article  PubMed  CAS  Google Scholar 

  • Mendoza VL, Antwi K, Baron-Rodriguez MA, Blanco C, Vachet RW (2010) Structure of the preamyloid dimer of β2-microglobulin from covalent labeling and mass spectrometry. Biochemistry 49:1522–1532

    Article  PubMed  CAS  Google Scholar 

  • Mimmi MC, Jorgensen TJD, Pettirossi F, Corazza A, Viglino P, Esposito G, De Lorenzi E, Giorgetti S, Pries M, Corlin DB, Nissen MH, Heegaard NHH (2006) Variants of β2-microglobulin cleaved at lysine-58 retain the main conformational features of the native protein but are more conformationally heterogeneous and unstable at physiological temperature. FEBS J 273:2461–2474

    Article  PubMed  CAS  Google Scholar 

  • Mironova R, Niwa T (2001) Molecular heterogeneity of amyloid β2-microglobulin and modification with advanced glycation end products. J Chromatogr B 758:109–115

    Article  CAS  Google Scholar 

  • Miyata T, Oda O, Inagi R, Iida Y, Araki N, Yamada N, Horiuchi S, Taniguchi N, Maeda K, Kinoshita T (1993) β2-Microglobulin modified with advanced glycation end-products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 92:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Inagi R, Iida Y, Sato M, Yamada N, Oda O, Maeda K, Seo H (1994) Involvement of β2-microglobulin modified with advanced glycation end-products in the pathogenesis of hemodialysis-associated amyloidosis—induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-α and interleukin-1. J Clin Invest 93:521–528

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Taneda S, Kawai R, Ueda Y, Horiuchi S, Hara M, Maeda K, Monnier VM (1996) Identification of pentosidine as a native structure for advanced glycation end products in β2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proc Natl Acad Sci USA 93:2353–2358

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Jadoul M, Kurokawa K, De Strihou CV (1998) β2-Microglobulin in renal disease. J Am Soc Nephrol 9:1723–1735

    PubMed  CAS  Google Scholar 

  • Morgan CJ, Gelfand M, Atreya C, Miranker AD (2001) Kidney dialysis-associated amyloidosis: a molecular role for copper in fiber formation. J Mol Biol 309:339–345

    Article  PubMed  CAS  Google Scholar 

  • Moriniere P, Marie A, Elesper N, Fardellone P, Deramond H, Remond A, Sebert JL, Fournier A (1991) Destructive spondyloarthropathy with β2-microglobulin amyloid deposits in a uremic patient before chronic-hemodialysis. Nephron 59:654–657

    Article  PubMed  CAS  Google Scholar 

  • Morten IJ, Gosal WS, Radford SE, Hewitt EW (2007) Investigation into the role of macrophages in the formation and degradation of β2-microglobulin amyloid fibrils. J Biol Chem 282:29691–29700

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Mount SL, Eltabbakh GH, Hardin NJ (2002) β2-Microglobulin amyloidosis presenting as bilateral ovarian masses—a case report and review of the literature. Am J Surg Pathol 26:130–133

    Article  PubMed  Google Scholar 

  • Mustata M, Capone R, Jang H, Arce FT, Ramachandran S, Lal R, Nussinov R (2009) K3 Fragment of Amyloidogenic β2-microglobulin forms ion channels: implication for dialysis-related amyloidosis. J Am Chem Soc 131:14938–14945

    Article  PubMed  CAS  Google Scholar 

  • Myers SL, Jones S, Jahn TR, Morten IJ, Tennent GA, Hewitt EW, Radford SE (2006a) A systematic study of the effect of physiological factors on β2-microglobulin amyloid formation at neutral pH. Biochemistry 45:2311–2321

    Article  PubMed  CAS  Google Scholar 

  • Myers SL, Thomson NH, Radford SE, Ashcroft AE (2006b) Investigating the structural properties of amyloid-like fibrils formed in vitro from β2-microglobulin using limited proteolysis and electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 20:1628–1636

    Article  PubMed  CAS  Google Scholar 

  • Niwa T (2001) Dialysis-related amyloidosis: pathogenesis focusing on AGE modification. Semin Dial 14:123–126

    Article  PubMed  CAS  Google Scholar 

  • Niwa T, Katsuzaki T, Miyazaki S, Momoi T, Akiba T, Miyazaki T, Nokura K, Hayase F, Tatemichi N, Takei Y (1997) Amyloid β2-microglobulin is modified with imidazolone, a novel advanced glycation end product, in dialysis-related amyloidosis. Kidney Int 51:187–194

    Article  PubMed  CAS  Google Scholar 

  • O’nuallain B, Wetzel R (2002) Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 99:1485–1490

    Article  PubMed  CAS  Google Scholar 

  • Ohashi K (2001) Pathogenesis of β2-microglobulin amyloidosis. Pathol Int 51:1–10

    Article  PubMed  CAS  Google Scholar 

  • Onishi S, Andress DL, Maloney NA, Coburn JW, Sherrard DJ (1991) β2-Microglobulin deposition in bone in chronic renal failure. Kidney Int 39:990–995

    Article  PubMed  CAS  Google Scholar 

  • Ookoshi T, Hasegawa K, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y, Naiki H (2008) Lysophospholipids induce the nucleation and extension of β2-microglobulin-related amyloid fibrils at a neutral pH. Nephrol Dial Transplant 23:3247–3255

    Article  PubMed  CAS  Google Scholar 

  • Otsubo S, Kimata N, Okutsu I, Oshikawa K, Ueda S, Sugimoto H, Mitobe M, Uchida K, Otsubo K, Nitta K, Akiba T (2009) Characteristics of dialysis-related amyloidosis in patients on haemodialysis therapy for more than 30 years. Nephrol Dial Transplant 24:1593–1598

    Article  PubMed  Google Scholar 

  • Pal-Gabor H, Gombos L, Micsonai A, Kovacs E, Petrik E, Kovacs J, Graf L, Fidy J, Naiki H, Goto Y, Liliom K, Kardos J (2009) Mechanism of lysophosphatidic acid-induced amyloid fibril formation of β2-microglobulin in vitro under physiological conditions. Biochemistry 48:5689–5699

    Article  PubMed  CAS  Google Scholar 

  • Paulsson KM, Wang P, Anderson PO, Chen SW, Pettersson RF, Li SL (2001) Distinct differences in association of MHC class I with endoplasmic reticulum proteins in wild-type, and β2-microglobulin- and TAP-deficient cell lines. Int Immunol 13:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Peaper DR, Cresswell P (2008) Regulation of MHC class I assembly and peptide binding. Annu Rev Cell Dev Biol 24:343–368

    Article  PubMed  CAS  Google Scholar 

  • Pepys MB (2006) Amyloidosis. Annu Rev Med 57:223–241

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Article  PubMed  CAS  Google Scholar 

  • Platt GW, Radford SE (2009) Glimpses of the molecular mechanisms of β2-microglobulin fibril formation in vitro: aggregation on a complex energy landscape. FEBS Lett 583:2623–2629

    Article  PubMed  CAS  Google Scholar 

  • Platt GW, Routledge KE, Homans SW, Radford SE (2008) Fibril growth kinetics reveal a region of β2-microglobulin important for nucleation and elongation of aggregation. J Mol Biol 378:251–263

    Article  PubMed  CAS  Google Scholar 

  • Rabindranath KS, Strippoli GF, Daly C, Roderick PJ, Wallace S, Macleod AM (2006) Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev 4:CD006258

    PubMed  Google Scholar 

  • Radford SE, Gosal WS, Platt GW (2005) Towards an understanding of the structural molecular mechanism of β2-microglobulin amyloid formation in vitro. Biochim Biophys Acta 1753:51–63

    PubMed  CAS  Google Scholar 

  • Raghavan M, Del Cid N, Rizvi SM, Peters LR (2008) MHC class I assembly: out and about. Trends Immunol 29:436–443

    Article  PubMed  CAS  Google Scholar 

  • Raj DSC, Ouwendyk M, Francoeur R, Pierratos A (2000) β2-Microglobulin kinetics in nocturnal haemodialysis. Nephrol Dial Transplant 15:58–64

    Article  PubMed  CAS  Google Scholar 

  • Relini A, Canale C, De Stefano S, Rolandi R, Giorgetti S, Stoppini M, Rossi A, Fogolari F, Corazza A, Esposito G, Gliozzi A, Bellotti V (2006) Collagen plays an active role in the aggregation of β2-microglobulin under physiopathological conditions of dialysis-related amyloidosis. J Biol Chem 281:16521–16529

    Article  PubMed  CAS  Google Scholar 

  • Relini A, De Stefano S, Torrassa S, Cavalleri O, Rolandi R, Gliozzi A, Giorgetti S, Raimondi S, Marchese L, Verga L, Rossi A, Stoppini M, Bellotti V (2008) Heparin strongly enhances the formation of β2-microglobulin amyloid fibrils in the presence of type I collagen. J Biol Chem 283:4912–4920

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS, Richardson DC (2002) Natural β-sheet proteins use negative design to avoid edge to edge aggregation. Proc Natl Acad Sci USA 99:2754–2759

    Article  PubMed  CAS  Google Scholar 

  • Roderick P, Davies R, Jones C, Feest T, Smith S, Farrington K (2004) Simulation model of renal replacement therapy: predicting future demand in England. Nephrol Dial Transplant 19:692–701

    Article  PubMed  Google Scholar 

  • Rosano C, Zuccotti S, Mangione P, Giorgetti S, Bellotti V, Pettirossi F, Corazza A, Viglino P, Esposito G, Bolognesi M (2004) β2-Microglobulin H31Y variant 3D structure highlights the protein natural propensity towards intermolecular aggregation. J Mol Biol 335:1051–1064

    Article  PubMed  CAS  Google Scholar 

  • Routledge KE, Tartaglia GG, Platt GW, Vendrusco M, Radford SE (2009) Competition between intramolecular and intermolecular interactions in an amyloid-forming protein. J Mol Biol 389:776–786

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Gejyo F (2006) Current clinical aspects of dialysis-related amyloidosis in chronic dialysis patients. Ther Apher Dial 10:316–320

    Article  PubMed  CAS  Google Scholar 

  • Schwalbe S, Holzhauer M, Schaeffer J, Galanski M, Koch KM, Floege J (1997) β2-Microglobulin associated amyloidosis: a vanishing complication of long-term hemodialysis? Kidney Int 52:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Sethi D, Murphy CMB, Brown EA, Muller BR, Gower PE (1989) Clearance of β2-microglobulin using continuous ambulatory peritoneal-dialysis. Nephron 52:352–355

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Yasui C, Yasukawa K, Nakamura H, Shimizu H, Tsuchiya K (2003) Subcutaneous nodules on the buttocks as a manifestation of dialysis-related amyloidosis: a clinicopathological entity? Br J Dermatol 149:400–404

    Article  PubMed  CAS  Google Scholar 

  • Smith DP, Jones S, Serpell LC, Sunde M, Radford SE (2003) A systematic investigation into the effect of protein destabilisation on β2-microglobulin amyloid formation. J Mol Biol 330:943–954

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Jahn TR, Ashcroft AE, Radford SE (2006a) Direct observation of oligomeric species formed in the early stages of amyloid fibril formation using electrospray ionisation mass spectrometry. J Mol Biol 364:9–19

    Article  PubMed  CAS  Google Scholar 

  • Smith JF, Knowles TPJ, Dobson CM, Macphee CE, Welland ME (2006b) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103:15806–15811

    Article  PubMed  CAS  Google Scholar 

  • Smith DP, Giles K, Bateman RH, Radford SE, Ashcroft AE (2007) Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry. J Am Soc Mass Spectrom 18:2180–2190

    Article  PubMed  CAS  Google Scholar 

  • Smith DP, Radford SE, Ashcroft AE (2010) Elongated oligomers in β2-microglobulin amyloid assembly revealed by ion mobility spectrometry-mass spectrometry. Proc Natl Acad Sci USA 107:6794–6798

    Article  PubMed  CAS  Google Scholar 

  • Souillac PO, Uversky VN, Millett IS, Khurana R, Doniach S, Fink AL (2002) Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation—evidence for an off-pathway oligomer at acidic pH. J Biol Chem 277:12666–12679

    Article  PubMed  CAS  Google Scholar 

  • Srikanth R, Mendoza VL, Bridgewater JD, Zhang GS, Vachet RW (2009) Copper binding to β2-microglobulin and its pre-amyloid oligomer. Biochemistry 48:9871–9881

    Article  PubMed  CAS  Google Scholar 

  • Stoppini M, Arcidiaco P, Mangione P, Giorgetti S, Brancaccio D, Bellotti V (2000) Detection of fragments of β2-microglobulin in amyloid fibrils. Kidney Int 57:349–350

    Article  PubMed  CAS  Google Scholar 

  • Stoppini M, Mangione P, Monti M, Giorgetti S, Marchese L, Arcidiaco P, Verga L, Segagni S, Pucci P, Merlini G, Bellotti V (2005) Proteomics of β2-microglobulin amyloid fibrils. Biochim Biophys Acta 1753:23–33

    PubMed  CAS  Google Scholar 

  • Sundaram R, Lynch MP, Rawale S, Dakappagari N, Young D, Walker CM, Lemonnier F, Jacobson S, Kaumaya PTP (2004) Protective efficacy of multiepitope human leukocyte antigen-A*0201 restricted cytotoxic T-lymphocyte peptide construct against challenge with human T-cell lymphotropic virus type 1 Tax recombinant vaccinia virus. J Acquir Immune Defic Syndr 37:1329–1339

    Article  PubMed  CAS  Google Scholar 

  • Tielemans C, Dratwa M, Bergmann P, Goldman M, Flamion B, Collart F, Wens R (1989) Continuous ambulatory peritoneal-dialysis, protective against developing dialysis-associated amyloid. Nephron 53:174–175

    Article  PubMed  CAS  Google Scholar 

  • Trinh CH, Smith DP, Kalverda AP, Phillips SEV, Radford SE (2002) Crystal structure of monomeric human β2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci USA 99:9771–9776

    Article  PubMed  CAS  Google Scholar 

  • Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O, Yuan JXJ, Masliah E (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3:e3135

    Article  PubMed  CAS  Google Scholar 

  • Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Protein Pept Lett 13:229–234

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    PubMed  CAS  Google Scholar 

  • Verdone G, Corazza A, Viglino P, Pettirossi F, Giorgetti S, Mangione P, Andreola A, Stoppini M, Bellotti V, Esposito G (2002) The solution structure of human β2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci 11:487–499

    Article  PubMed  CAS  Google Scholar 

  • Warren DJ, Otieno LS (1975) Carpal-tunnel syndrome in patients on intermittent hemodialysis. Postgrad Med J 51:450–452

    Article  PubMed  CAS  Google Scholar 

  • Wearsch PA, Cresswell P (2008) The quality control of MHC class I peptide loading. Curr Opin Cell Biol 20:624–631

    Article  PubMed  CAS  Google Scholar 

  • Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda SI, Masters CL, Merlini G, Saraiva MJ, Sipeo JD (2007) A primer of amyloid nomenclature. Amyloid 14:179–183

    Article  PubMed  CAS  Google Scholar 

  • White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS, Muller S, Orlova EV, Radford SE, Saibil HR (2009) Globular tetramers of β2-microglobulin assemble into elaborate amyloid fibrils. J Mol Biol 389:48–57

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Rastegar M, Gordon J, Safa AR (2001) β2-Microglobulin induces apoptosis in HL-60 human leukemia cell line and its multidrug resistant variants overexpressing MRP1 but lacking Bax or overexpressing P-glycoprotein. Oncogene 20:7006–7020

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Gordon JD, Zhong XL, Safa AR (2002) Mechanism of β2-microglobulin-induced apoptosis in the K562 leukemia cell line, defective in major histocompatibility class 1. Anticancer Res 22:2613–2621

    PubMed  CAS  Google Scholar 

  • Xue WF, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 105:8926–8931

    Article  PubMed  CAS  Google Scholar 

  • Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284:34272–34282

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi KI, Katou H, Hoshino M, Hasegawa K, Naiki H, Goto Y (2004) Core and heterogeneity of β2-microglobulin amyloid fibrils as revealed by H/D exchange. J Mol Biol 338:559–571

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Naiki H, Goto Y (2006) Mechanism by which the amyloid-like fibrils of a β2-microglobulin fragment are induced by fluorine-substituted alcohols. J Mol Biol 363:279–288

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004a) Low concentrations of sodium dodecyl sulfate induce the extension of β2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43:11075–11082

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Yamaguchi I, Hasegawa K, Tsutsumi S, Goto Y, Gejyo F, Naiki H (2004b) Glycosaminoglycans enhance the trifluoroethanol-induced extension of β2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol 15:126–133

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Hasegawa K, Yamaguchi I, Goto Y, Gejyo F, Naiki H (2005) Kinetic analysis of the polymerization and depolymerization of β2-microglobulin-related amyloid fibrils in vitro. Biochim Biophys Acta 1753:34–43

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Kazama JJ, Narita I, Naiki H, Gejyo F (2009) Recent progress in understanding dialysis-related amyloidosis. Bone 45:S39–S42

    Article  PubMed  CAS  Google Scholar 

  • Yusa H, Yoshida H, Kikuchi H, Onizawa K (2001) Dialysis-related amyloidosis of the tongue. J Oral Maxillocfac Surg 59:947–950

    Article  CAS  Google Scholar 

  • Zhang R, Hu XY, Khant H, Ludtke SJ, Chiu W, Schmid MF, Frieden C, Lee JM (2009) Interprotofilament interactions between Alzheimer’s Aβ(1–42) peptides in amyloid fibrils revealed by cryoEM. Proc Natl Acad Sci USA 106:4653–4658

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) β2-Microglobulin deficient mice lack Cd4-8+ cytolytic T-cells. Nature 344:742–746

    Article  PubMed  CAS  Google Scholar 

  • Zingraff JJ, Noel LH, Bardin T, Atienza C, Zins B, Drueke TB, Kuntz D (1990) β2-Microglobulin amyloidosis in chronic-renal-failure. N Engl J Med 323:1070–1071

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to members of our research groups for many discussions during the preparation of this review. Our research is funded by the Biotechnological and Biological Sciences Research Council and the Wellcome Trust. Their support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena E. Radford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hodkinson, J.P., Ashcroft, A.E., Radford, S.E. (2012). Protein Misfolding and Toxicity in Dialysis-Related Amyloidosis. In: Rahimi, F., Bitan, G. (eds) Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2774-8_12

Download citation

Publish with us

Policies and ethics