Advertisement

Are We Still Babylonians? The Structure of the Foundations of Mathematics from a Wimsattian Perspective

  • Ralf KrömerEmail author
Chapter
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 292)

Abstract

We will investigate the usefulness of Wimsatt’s concept of robustness for mathematics. In the experimental sciences, there are no demonstrations in the strict sense but only ‘confirmations’ of various types of the propositions one believes in. Wimsatt stressed that our conviction of a proposition grows with the number of independent and convergent confirmations. In the chapter, we shall investigate whether and to which degree wimsattian robustness is at issue in the practice of mathematicians, namely in the discussion of propositions considered as very useful, desirable, likely etc. but found to be logically independent of usual well-established bases of deduction. We will study two examples: the proposition asserting the consistency of set theory, and the proposition asserting the relative consistency of a certain large cardinal axiom. In these cases, one finds utterings from practitioners (including Bourbaki and Grothendieck) which suggest that confidence in the reliability of the propositions is based on the (alleged) presence of non-necessary but multiple, independent and convergent confirmations. These claims are submitted to thorough scrutiny. The second example might seem quite technical, but its discussion is useful for judging the relevance of such a concept of robustness for mathematics because it concerns a mathematical discipline (category theory) which is very important but which can’t claim so far to have reached a state of development rendering unlikely the future discovery of contradictions.

Keywords

Category Theory Axiom System Relative Consistency Definite Truth Euclidean Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Artin, M., A. Grothendieck, and J. L. Verdier. 1972. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). 269 Lecture Notes Math. Berlin: Springer.Google Scholar
  2. Bénabou, J. 1985. “Fibered Categories and the Foundations of Naive Category Theory.” The Journal of Symbolic Logic 50(1):10–37.CrossRefGoogle Scholar
  3. Bourbaki, N. 1948. “L’Architecture des mathématiques.” In Les grands courants de la pensée mathematique, edited by F. LeLionnais, 35–47. Paris: Blanchard.Google Scholar
  4. Bourbaki, N. 1949. “Foundations of Mathematics for the Working Mathematician.” The Journal of Symbolic Logic 14:1–8.CrossRefGoogle Scholar
  5. Bourbaki, N. 1954. Eléments de mathématique. Première partie. Livre I: Théorie des ensembles. Chapitre 1: Description de la mathématique formelle. Chapitre 2: Théorie des ensembles. Paris: Hermann.Google Scholar
  6. Cartan, H. 1943. “Sur le Fondement Logique Des Mathématiques.” Revue Science (Review of Rose Illustration) 81:3–11.Google Scholar
  7. Corry, L. 1996. Modern Algebra and the Rise of Mathematical Structures. Science Network Historical Studies, vol. 17. Basel: Birkhäuser. Zbl.858.01022; MR97i:01023.Google Scholar
  8. Dawson, J.W.J. 2006. “Why do Mathematicians Re-Prove Theorems?” Philosophia Mathematica 14(3):269–86.Google Scholar
  9. Dieudonné, J. 1939. “Les Méthodes Axiomatiques Modernes Et Les Fondements Des Mathématiques.” Review of Science 77:224.Google Scholar
  10. Dieudonné, J. 1951. “L’axiomatique Dans Les Mathématiques Modernes.” In Congrès International de Philosophie des Sciences, Paris, 1949, vol. III, Philosophie Mathématique, Mécanique, 47–53. Paris: Hermann & Cie.Google Scholar
  11. Drake, F.R. 1974. Set Theory. An Introduction to Large Cardinals. Studies in Logic and the Foundations of Mathematics, vol. 76. North–Holland.Google Scholar
  12. Eilenberg, S., and S. Mac Lane. 1945. “General Theory of Natural Equivalences.” Transactions of the American Mathematical Society 58:231–94.Google Scholar
  13. Feynman, R.P. 1965. The Character of Physical Law. Cambridge, MA: MIT Press.Google Scholar
  14. Gödel, K. 1931. “Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme.” Monatshefte 38:173–98.Google Scholar
  15. Gödel, K. 1947. “What is Cantor’s Continuum Problem?” American Mathematical Monthly 54:515–25.CrossRefGoogle Scholar
  16. Isbell, J. 1966. “Structure of Categories.” Bulletin of the American Mathematical Society 72:619–55.CrossRefGoogle Scholar
  17. Kreisel, G. 1974. “Die Formalistisch–Positivistische Doktrin der Mathematischen Präzision im Licht der Erfahrung.” In Mathematiker Über Die Mathematik, edited by Michael Otte, 64–137. Berlin: Springer.Google Scholar
  18. Krömer, R. 2003. “Axiomes Pour Les Espaces Vectoriels 1918–1923.” In Histoires des Géométries. Textes du Séminaire de L’année 2003, edited by D. Flament, 119–28. Paris: Maison des Sciences de l’Homme.Google Scholar
  19. Krömer, R. 2006. “La ‘Machine De Grothendieck’, Se Fonde-T-Elle Seulement Sur Des Vocables Métamathématiques? Bourbaki Et Les Catégories Au Cours Des Années Cinquante.” Revue d’Histoire des Mathématiques 12:111–54.Google Scholar
  20. Krömer, R. 2007. Tool and Object. A History and Philosophy of Category Theory. Science Network Historical Studies, vol. 32. Basel: Birkhäuser.Google Scholar
  21. Kruse, A. 1965. “Grothendieck Universes and the Super–Complete Models of Shepherdson.” Compuational Mathematics 17:96–101.Google Scholar
  22. Kunen, K. 1980. Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. Amsterdam: North-Holland.Google Scholar
  23. McLarty, C. 2010. “What does it Take to Prove Fermat’s Last Theorem? Grothendieck and the Logic of Number Theory.” Bulletin of Symbolic Logic 16(3):359–77.Google Scholar
  24. Moore, G.H. 1995. “The Axiomatization of Linear Algebra: 1875–1940.” History of Mathematics 22:262–303.CrossRefGoogle Scholar
  25. Tarski, A. 1938. “Über Unerreichbare Kardinalzahlen.” Fundamenta Mathematicae 30:68–89.Google Scholar
  26. Wimsatt, W.C. 1981. “Robustness, Reliability, and Overdetermination.” In Scientific Inquiry in the Social Sciences (a festschrift for Donald T. Campbell) edited by Brewer, M. and Collins, B., 123–62. San Francisco, CA: Jossey-Bass.Google Scholar
  27. Zermelo, E. 1930. “Über Grenzzahlen und Mengenbereiche.” Fundamenta Mathematicae 16:29–47.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany

Personalised recommendations