Skip to main content

Chloride ingress in cracked concrete- a literature review

  • Conference paper
  • First Online:
Advances in Modeling Concrete Service Life

Part of the book series: RILEM Bookseries ((RILEM,volume 3))

Abstract

Chloride induced corrosion of reinforcing steel is one of the most ­important mechanisms causing deterioration of reinforced concrete structures and the need for their premature repair or replacement. Significant research efforts have, therefore, been undertaken in recent decades, trying to quantify these effects. Yet, most of the studies and recommendations are based on the assumption of sound, uncracked concrete. However, reinforced concrete structures are frequently cracked, due to different causes, such as shrinkage, thermal effects, and loading. Cracking of the reinforced concrete structural members alters the local transport properties of the concrete cover, and allows rapid ingress of chloride ions and onset of corrosion. In the past two decades, several studies have focused on the influence of cracks on chloride ingress in concrete. This paper aims to review these research efforts, with respect to experimental methods used to produce cracked specimens, simulate harsh exposure conditions and analyze the results. Different influencing parameters are discussed, and some recommendations for further research are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neville A. (1995), Mater Struct, vol. 28, pp. 63–70

    Article  Google Scholar 

  2. Adiyastuti, S.M. (2005), Influence of cracks on chloride induced corrosion in reinforced concrete flexural members, PhD Thesis, University of New South Wales, Sydney, Australia

    Google Scholar 

  3. Aldea, C.M., Shah, S.P. and Karr, A. (1999), J Mater Civil Eng, vol. 11, n.3, pp. 181–187

    Article  Google Scholar 

  4. Audenaert, K., Marsavina, L. and De Schutter, G. (2009), Key Eng Mat, vol. 399, pp. 153–160

    Article  Google Scholar 

  5. Djerbi, A., Bonnet, S., Khelidj, A. and Baroghel-bouny, V. (2008), Cement Concrete Res, vol. 38, pp. 877–883

    Article  Google Scholar 

  6. François, R. and Arliguie, G. (1998), J Mater Civil Eng, vol. 10, n. 1, pp. 14–20

    Article  Google Scholar 

  7. Gowripalan, N., Sirivivnaton, V. and Lim, C.C. (2000), Cement Concrete Res, vol. 30, pp. 725–730

    Article  Google Scholar 

  8. Ismail, M., Tuomi, A., François, R. and Gagne, R. (2004), Cement Concrete Res, vol. 34, pp. 711–716

    Article  Google Scholar 

  9. Ismail, M., Tuomi, A., François, R. and Gagne, R. (2008), Cement Concrete Res, vol. 38, pp. 1106–1111

    Article  Google Scholar 

  10. Jacobsen, S., Marchand, J. and Boisvert, L. (1996), Cement Concrete Res, vol. 36, pp. 869–881

    Article  Google Scholar 

  11. Konin, A., François, R. and Arliguie, G. (1998), Mater Struct, vol. 31, pp. 310-316

    Article  Google Scholar 

  12. Lim, C.C., Gowripalan, N., and Sirivivatnon, V. (2000), Cement Concrete Comp, vol.22, pp. 353–360

    Article  Google Scholar 

  13. Marcotte, T.D., Hansson, C.M. (2003), J Mater Sci, vol. 38, pp. 4765–4776

    Article  Google Scholar 

  14. Marsavina, L., Audenaert, K., De Schutter, G., Faur, N. and Marsavina, D. (2009), Constr Build Mater, vol. 23, pp. 264–274

    Article  Google Scholar 

  15. Mohammed, T.U., Otsuki, N., Hisada, M. and Shibata, T. (2001), J Mater Civil Eng, vol. 13, n.3, pp. 194–201

    Article  Google Scholar 

  16. Otieno, M.B., Alexander, M.G. and Beushausen, H.-D. (2010), Mag Concrete Res, vol. 62, n.6, pp. 393–404

    Article  Google Scholar 

  17. Otsuki, N., Miyazato, S., Diola, N.B. and Suzuki, H. (2000), ACI Mater J, vol. 97, n. 4, pp. 454–464

    Google Scholar 

  18. Garces Rodriguez, O. and Hooton, R.D. (2003), ACI Mater J, vol. 100, n.2, pp. 120–126

    Google Scholar 

  19. Sahmaran, M. (2007), J Mater Sci, vol. 42, pp. 9131–9136

    Article  Google Scholar 

  20. Schießl, P. and Raupach, M. (1997), ACI Struct J, vol. 94, n. 1, pp. 56–61

    Google Scholar 

  21. Win, P. P., Watanabe, M. and Machida, A. (2004), Cement Concrete Res, vol. 34, p. 1073–1079

    Article  Google Scholar 

  22. Yoon, I. S., Schlangen, E., de Rooij, M.R. and van Breugel, K. (2007), Key Eng Mat, vols. 348-349, pp. 769–772

    Article  Google Scholar 

  23. Yoon, I. S. and Schlangen, E. (2010), Key Eng Mat, vols. 417-418, pp. 765–768

    Article  Google Scholar 

  24. Taheri-Motlagh, A. (1998), Durability of reinforced concrete structures in aggressive marine environment, PhD Thesis, Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  25. NordTest NT BUILD 443 (1995), Finland

    Google Scholar 

  26. NordTest NT BUILD 492 (1999), Finland

    Google Scholar 

  27. Jang, S. Y., Kim, B.S., and Oh, B.H. (2011), Cement Concrete Res, vol. 41, pp. 9–19

    Article  Google Scholar 

  28. Aldea, C.M., Shah, S.P. and Karr, A. (1999), Mater Struct, vol. 32, pp.370–376

    Article  Google Scholar 

  29. ang, K., Jansen, D.C. and Shah, S.P. (1997), Cement Concrete Res, vol. 37, pp.381–93

    Article  Google Scholar 

  30. Küter, A., Geiker, M.R., Olesen, J.F., Stang, H., Dauberschmidt, C. and Raupach, M. (2005). In: Proceedings of ConMat ’05, Vancouver, Canada

    Google Scholar 

  31. Schlangen, E. and Joseph, C. (2008) In: Self-Healing Materials: Fundamentals, Design Strategies, and Applications, Chapter 5, pp. 141-182, Ghosh S. K. (Ed.), WILEY-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  32. François, R., Castel, A., Vidal, T. and Vu, -N.A. (2006), J Phys IV, 136, pp.285-293

    Google Scholar 

  33. Stanish, K.D., Hooton, R.D. and Thomas, M.D.A. (1997), FHMA Contract DTFH61, Department of Civil Engineering, University of Toronto, Canada

    Google Scholar 

  34. Pease, B.J. (2010), Influence of concrete cracking on ingress and reinforcement corrosion, PhD thesis, Technical University of Denmark, Lyngby, Denmark

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Šavija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 RILEM

About this paper

Cite this paper

Šavija, B., Schlangen, E. (2012). Chloride ingress in cracked concrete- a literature review. In: Andrade, C., Gulikers, J. (eds) Advances in Modeling Concrete Service Life. RILEM Bookseries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2703-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2703-8_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2702-1

  • Online ISBN: 978-94-007-2703-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics