Skip to main content

Mobile Object Framework and Fuzzy Graph Modelling to Boost HazMat Telegeomonitoring

  • Conference paper
  • First Online:
Transport of Dangerous Goods

Abstract

This chapter describes a real-time mobile information system which responds to the vulnerabilities of the transportation of dangerous goods. It describes the integration of various software components to boost HazMat (hazardous material) telegeomonitoring and presents a real-time, object-oriented model. It also explains how to integrate a spatial decision support system and how the result can be exploited by computer science. It focuses specifically on two particularly helpful contributions to improvements in the safe transport of HazMat. The first is the problem of finding the fuzzy shortest path. It discusses an original solution using an algebraic dioïd structure to solve the k-best fuzzy shortest paths problem. The second deals with mobile object modelling. A mobile object data model and a mobile query language with a powerful set of spatiotemporal predicates are outlined. This approach is based on the comprehensive framework of abstract data types. It represents the first steps in constructing innovative moving object databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Björkander M, Kobryn C (2003) Architecting systems with UML 2.0. IEEE Software 20(4):57–61

    Article  Google Scholar 

  2. Boulmakoul A (2004) Generalized path-finding algorithms on semirings and the fuzzy shortest path problem. J Comput Appl Math 162(1):263–272

    Article  MathSciNet  MATH  Google Scholar 

  3. Boulmakoul A (2006) Fuzzy graphs modeling for HazMat telegeomonitoring. Eur J Oper Res 175(3):1514–1525

    Article  MATH  Google Scholar 

  4. Boulmakoul A, Bouziri AE (2009) Modélisation d’objets mobiles pour les systèmes d’information géolocalisés itinérants en temps réel. le numéro spécial sur les Systèmes d’information et géolocalisation de la revue Ingénierie des systèmes d’information 14:5

    Google Scholar 

  5. Boulmakoul A, Chala M, Bouziri AE, Laurini R (2008) Modeling a real time mobile information system for HazMat telegeomonitoring. In: Bersani C, Boulmakoul A, Garbolino E, Sacile R (eds) Advanced technologies and methodologies for risk management in the global transport of dangerous goods, vol 45, NATO Science for Peace and Security Series: Human and Societal Dynamics. IOPress, Washington, DC, pp 169–193

    Google Scholar 

  6. Boulmakoul A, Laurini R (1999) Système d’informations télégéomatiques pour la supervision des transports des matières dangereuses. Revue Internationale de Géomatique 9(3):317–336, Hermès Ed

    Google Scholar 

  7. Boulmakoul A, Laurini R, Servignes S, Idrissi MAJ (1999) First specifications of a telegeomonitoring system for the transportation of hazardous materials. Comput Environ Urban Syst 23:259–270, Pergamon

    Article  Google Scholar 

  8. Boulmakoul A, Zeitouni Z, Laurini R (1997) Un système d’information environnemental urbain pour la surveillance du transport des matières dangereuses: cas de la ville de Mohammedia-Maroc. Conférence européenne sur les technologies de l’information pour l’environnement, Strasbourg, Metroplolis, pp 187–196, ISBN: 9518-163-3

    Google Scholar 

  9. Boulmakoul A, Zeitouni Z, Laurini R, Aufaure MA (1997) Spatial decision support system for hazardous materials transportation planning. In: IFAC transportation systems’97, June 16–18, Chania, Greece, pp 611–616

    Google Scholar 

  10. Chanas S, Delgado M, Verdegay JL, Vila MA (1995) Fuzzy optimal flow on imprecise structures. Eur J Oper Res 83:568–580

    Article  MATH  Google Scholar 

  11. Delgado M, Verdegay JL, Vila MA (1990) On valuation and optimisation problems in fuzzy graphs: a general approach and some particular cases. ORSA J Comput 2(1):75–83

    MathSciNet  Google Scholar 

  12. DOT (1989) Guidelines for applying criteria to designate routes for transportation hazardous materials, Report No. DOT/RSPA/OHMT, 1989–02, Federal Hwy. Admin, Washington, DC

    Google Scholar 

  13. Dubois D, Prade H (1978) Algorithmes de plus courts chemins pour traiter des données floues. RAIRO/Oper Res 2(2):213–227

    Google Scholar 

  14. Dubois D, Prade H (1980) Fuzzy sets and systems. Academic, New York

    MATH  Google Scholar 

  15. Egenhofer MJ (1991) Point-Set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174

    Article  Google Scholar 

  16. Erwig M, Güting RH, Schneider M, Vazirgiannis M (1999) Spatiotemporal data types: an approach to modeling and querying moving objects in databases. Geoinformatica 3(3):269–296

    Article  Google Scholar 

  17. Erwig M, Schneider M (2002) Spatio-temporal predicates. IEEE Trans Knowl Data Eng 14(4):881–901

    Article  Google Scholar 

  18. Furukawa N (1994) A parametric total order on fuzzy numbers and a fuzzy shortest route problem. Optimization 30:367–377

    Article  MathSciNet  MATH  Google Scholar 

  19. Galperin D (1977) On the optimality of A*. Artif Intell 8(1):69–76

    Article  Google Scholar 

  20. Gondran M (1975) Path algebra and algorithms. In: Roy B (ed) Combinatorial programming: methods and applications. D. Reidel Publish Co, Dordrecht, Holland, pp 137–148

    Google Scholar 

  21. Gondran M (1975) Algèbre linéaire et cheminement dans un graphe. RAIRO/Oper Res 1:77–99

    MathSciNet  Google Scholar 

  22. Gondran M, Minoux M (1984) Linear algebra in dioïds: a survey of recent results. Ann Discrete Math 19:147–164

    MathSciNet  Google Scholar 

  23. Gondran M, Minoux M (1995) Graphes et algorithmes, 3rd edn. Eyrolles, Paris

    Google Scholar 

  24. Güting RH, Schneider M (2005) Moving objects databases. Morgan Kaufmann Publishers, London

    Google Scholar 

  25. Güting RH et al (2000) A foundation for representing and querying moving objects. Geoinformatica ACM Trans Databases Syst 25(1):1–42

    Article  Google Scholar 

  26. ISO/TC211 (2000) Geographic Information/Geomatics: ISO 19108-Temporal Schema

    Google Scholar 

  27. Jagoe A (2002) Mobile location services—the definitive guide. Prentice Hall PTR, Denver

    Google Scholar 

  28. Klein CM (1991) Fuzzy shortest paths. Fuzzy Sets Syst 39:27–41

    Article  MATH  Google Scholar 

  29. Kobryn C, Samuelsson E (2003) Driving architectures with UML 2.0. A Telelogic white paper

    Google Scholar 

  30. Koczy LT (1992) Fuzzy graphs in the evaluation and optimisation of networks. Fuzzy Sets Syst 46:307–319

    Article  MathSciNet  MATH  Google Scholar 

  31. Koubarakis M, Sellis T (2000) Spatiotemporal databases: the Chorochronos approach. Springer Verlag, New York

    Google Scholar 

  32. Kuntzmann J (1972) Théorie des réseaux. Dunod, Paris

    MATH  Google Scholar 

  33. Küpper A (2005) Location based services. Wiley, Chichester

    Book  Google Scholar 

  34. Laurini R (2000) An introduction to TeleGeoMonitoring: problems and potentialities. In: Atkinson P, Martin D (eds) GIS Innovations. Taylor and Francis 1999, London, pp 11–26

    Google Scholar 

  35. Lawler E (1976) Combinatorial optimisation; networks and matroids. Holt, Reinehart and Winston, New York

    Google Scholar 

  36. Lin KC, Chern MS (1993) The fuzzy shortest path problem and its most vital arcs. Fuzzy Sets Syst 58:343–353

    Article  MathSciNet  MATH  Google Scholar 

  37. Minoux M (1976) Structures algébriques généralisées des problèmes de cheminements dans les graphes: Théorèmes, algorithmes et applications. RAIRO – Rech Opérationnelle 10(6):33–62

    MathSciNet  Google Scholar 

  38. Minoux M (1977) Generalized path algebras. In: Prekopa A (ed) Surveys of mathematical programming. Publishing House of the Hungarian Academy of Sciences, Budapest, pp 359–364

    Google Scholar 

  39. OGC (1999) OpenGIS simple feature specification for SQL. Document 99–049

    Google Scholar 

  40. OGC (2003a) OpenGIS location services (OpenLSTM): Part 1–5 Core Services”. OGC 03-006r1

    Google Scholar 

  41. OGC (2003b) Open GIS web services architecture (WSA). OGC 03–025, version 0.3

    Google Scholar 

  42. Okada S, Soper T (2000) A shortest path problem on a network with fuzzy arc lengths. Fuzzy Sets Syst 109:129–140

    Article  MathSciNet  MATH  Google Scholar 

  43. OMG (2005a) UML profile for schedulability, performance and time. formal/05-01-02, version 1.1

    Google Scholar 

  44. OMG (2005b) Unified modeling language: superstructure. Formal/05-07-04, version 2.0

    Google Scholar 

  45. Prade H (1979) Using fuzzy set theory in a scheduling problem: a case study. Fuzzy Sets Syst 2:153–165

    Article  MathSciNet  MATH  Google Scholar 

  46. Stojanovic D, Djordjevic-Kajan S (2003) Modeling and querying mobile objects in location-based services. Sci J Fac Univ 18:59–80, Series Mathematics and Informatics, NIS, Serbia

    Google Scholar 

  47. TRANSMODEL (2003) Reference data model for public transport (in UML), version 5.1

    Google Scholar 

  48. Vazirgiannis M, Wolfson O (2001) A spatio-temporal model and language for moving objects on road networks. In: Proceedings of 7th SSTD, USA, pp 20–35

    Google Scholar 

  49. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azedine Boulmakoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Boulmakoul, A., Bouziri, A.E. (2012). Mobile Object Framework and Fuzzy Graph Modelling to Boost HazMat Telegeomonitoring. In: Garbolino, E., Tkiouat, M., Yankevich, N., Lachtar, D. (eds) Transport of Dangerous Goods. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2684-0_5

Download citation

Publish with us

Policies and ethics