Skip to main content

Spring-Mass Systems

  • Chapter
  • First Online:
Vibrations of Elastic Systems

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 184))

  • 3070 Accesses

Abstract

The single degree-of-freedom system subject to mass and base excitation is used to model an elastic system to determine the frequency-domain effects of squeeze film air damping and viscous fluid damping. This model is also used to determine the important response characteristics of electrostatic attraction and van der Waals forces, the maximum average power from piezoelectric and electromagnetic coupling, and to illustrate the fundamental working principle of an atomic force microscope. The two degree-of-freedom system is introduced to examine microelectromechanical filters, atomic force microscope specimen control devices, and as a means to increase the input to piezoelectric energy harvesters. An appendix gives the details of the derivation of a hydrodynamic function that expresses the effects of a viscous fluid on a vibrating cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If i is the current, e is the voltage, and q the charge, then the potential energy of a capacitor is

    $$U_e = \int {iedt} = \int {edq} = C\int {ede} = \frac{1}{2}Ce^2$$

    since and \(i = dq/dt\) and q = Ce, where C is the capacitance. For parallel plates separated by a distance g o , \(C = \varepsilon _o A/g_o\) and we have

    $$U_e = \frac{{\varepsilon _o Ae^2 }}{{2g_o }}.$$

    The force is obtained from

    $$F = - \frac{{\partial U_e }}{{\partial g_o }} = \frac{{\varepsilon _o Ae^2 }}{{2g_o^2 }}.$$
  2. 2.

    During manufacture, a piezoelectric material is polarized with a DC electric field with a polarizing voltage that is usually applied at a temperature slightly below the material’s Curie temperature. Prior to the application of the polarizing voltage the dipole moments are randomly oriented. If the negative terminal of the polarizing voltage is at the top of the material, the direction of the polarizing axis is considered to go from the bottom of the material (positive terminal) to the top. After the removal of the polarizing voltage, the dipole moments are permanently aligned in what is called the poling direction. Compression (tension) of the material along the direction of polarization or tension (compression) perpendicular to the polarization direction generates a voltage of the same (opposite) polarity as the poling voltage.

  3. 3.

    The following units may prove useful in the subsequent material. If C = coulomb, J = joule, V = volt, A = ampere, W = watt, H = henry, and F = farad, then J = Ws = Nm, V = J/C, A = C/s, F = C/V, ohm = Js/C2, and H = Js2/C2. Also note the distinction in the use of the symbol C: C is coulomb when not italicized and C italicized in this chapter denotes a capacitor.

  4. 4.

    The MATLAB function ilaplace from the Symbolic Math toolbox was used.

  5. 5.

    The MATLAB function ilaplace from the Symbolic Math toolbox was used.

References

  • Abramovitch DY, Andersson SB, Pao LY, Schitter G (2007) A tutorial on the mechanisms, dynamics, and control of atomic force microscopes. Proceedings of the 2007 American Control Conference, pp 3488–3502

    Google Scholar 

  • Aldraihem O, Baz A (2011) Energy harvester with a dynamic magnifier. J Intell Mater Syst Struct 22(6):521–530

    Article  Google Scholar 

  • ANSI/IEEE Std 176-1987 (1988) IEEE standard on piezoelectricity. The Institute of Electrical and Electronics Engineers, New York, NY

    Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21

    Article  Google Scholar 

  • Arnold DP (2007) Review of microscale magnetic power generation. IEEE Trans Magn 43(11):3940–3951

    Article  Google Scholar 

  • Balachandran B, Magrab EB (2009) Vibrations, 2nd edn. Cengage, Toronto, ON

    Google Scholar 

  • Bannon FD, Clark JR, Nguyen CT-C (2000) High-Q HF microelectromechanical filters. IEEE J Solid-State Circuits 35(4):512–536

    Article  Google Scholar 

  • Bao M, Yang H (2007) Review: squeeze film air damping in MEMS. Sens Actuators A 136(1):3–27

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16(6):R23–R31

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195

    Article  Google Scholar 

  • Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17:1257–1265

    Article  Google Scholar 

  • Bergström L (1997) Hamaker constants of inorganic materials. Adv Colloid Interface Sci 70:125–169

    Article  Google Scholar 

  • Bhiladvala RB, Wang ZJ (2004) Effect of fluids on the Q factor and resonance frequency of oscillating micrometer and nanometer scale beams. Phys Rev E 69:036307

    Article  Google Scholar 

  • Binnig GK, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  • Blech JJ (1983) On isothermal squeeze films. ASME J Lubr Technol 105:615–620

    Article  Google Scholar 

  • Burnham NA, Behrend OP, Oulevey F, Gremaud G, Gallo P-J, Gourdon D, Dupas E, Kulik AJ, Pollock HM, Briggs GAD (1997) How does a tip tap? Nanotechnology 8(2):67–75

    Article  Google Scholar 

  • Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  Google Scholar 

  • Chen SS, Wambsganss MW, Jendrzejczyk JA (1976) Added mass and damping of a vibrating rod in confined viscous fluids. ASME J Appl Mech 43:325–328

    Article  Google Scholar 

  • Cheng S, Wang N, Arnold DP (2007) Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. J Micromech Microeng 17:2328–2335

    Article  Google Scholar 

  • Chivukila VB, Rhoads JF (2010) Microelectromechanical bandpass filters based on cyclic coupling architectures. J Sound Vib 329(20):4313–4332

    Article  Google Scholar 

  • Cornwell PJ, Goethal J, Kowko J, Damianakis M (2005) Enhancing power harvesting using a tuned auxiliary structure. J Intell Mater Syst Struct 16:825–834

    Article  Google Scholar 

  • Crandall IB (1918) The air-damped vibrating system: theoretical calibration of the condenser transmitter. Phys Rev 11(6):449–460

    Article  Google Scholar 

  • Darling RB, Hivick C, Xu J (1998) Compact analytical modeling of squeeze film damping with arbitrary venting conditions using a Green’s function approach. Sens Actuators A 70:32–41

    Article  Google Scholar 

  • duToit NE, Wardle BL, Kim S-G (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectrics 71:121–160

    Article  Google Scholar 

  • Elka A, Bucher I (2008) On the synthesis of micro-electromechanical filters using structural dynamics. J Micromech Microeng 18:125018

    Article  Google Scholar 

  • Gabrielson TB (1993) Micromachined mechanical-thermal noise in acoustic and vibration sensors. IEEE Trans Electron Devices 40(5):903–909

    Article  Google Scholar 

  • Gallis MA, Torczynski JR (2004) An improved reynolds-equation model for gas damping of microbeam motion. J Microelectromech Syst 13(4):653–659

    Article  Google Scholar 

  • Garcıa R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60(7):4961–4967

    Article  Google Scholar 

  • Halvorsen E (2008) Energy harvesters driven by broadband random vibrations. J Microelectromech Syst 17(5):1061–1071

    Article  Google Scholar 

  • Hutcherson S, Ye W (2004) On the squeeze-film damping of micro-resonators in the free-molecule regime. J Micromech Microeng 14:1726–1733

    Article  Google Scholar 

  • Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14:907–945

    Article  Google Scholar 

  • Johnson RA (1983) Mechanical filters in electronics. Wiley, New York, NY

    Google Scholar 

  • Keskar G, Elliott B, Gaillard J, Skove MJ, Rao AM (2008) Using electric actuation and detection of oscillations in microcantilevers for pressure measurements. Sens Actuators A 147:203–209

    Article  Google Scholar 

  • Kirstein S, Mertesdorf M, Schönfoff M (1998) The influence of a viscous fluid on the vibration dynamics of scanning near-field optical microscopy fiber probes and atomic force microscopy cantilevers. J Appl Phys 84(4):1782–1790

    Article  Google Scholar 

  • Langlois WE (1962) Isothermal squeeze films. Quart Appl Math XX(2):131–150

    Google Scholar 

  • Levinzon FA (2004) Fundamental noise limit of piezoelectric accelerometers. IEEE Sens J 4(1):108–111

    Article  Google Scholar 

  • Li L, Brown G, Uttamchandani D (2006) Air-damped microresonators with enhanced quality factor. J Microelectromech Syst 15(4):822–831

    Article  Google Scholar 

  • Lin L, Howe RT, Pisano AP (1998) Microelectromechanical filters for signal processing. J Microelectromech Syst 7(3):286–294

    Article  Google Scholar 

  • Ma PS, Kim JE, Kim YY (2010) Power-amplifying strategy in vibration-powered energy harvesters. Proc SPIE 7643:76430O-1

    Google Scholar 

  • Martin MJ, Houston BH (2007) Gas damping of carbon nanotube oscillators. Appl Phys Lett 91(10):103116

    Article  Google Scholar 

  • Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J Appl Phy 61:4723–4729

    Article  Google Scholar 

  • McCarthy B, Adams G, McGruer NE (2002) A dynamic model, including contact bounce, of an electrostatically actuated microswitch. J Microelectromech Syst 11(3): 276–283

    Article  Google Scholar 

  • Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proceeding of the IEEE 96(9):1457–1486

    Article  Google Scholar 

  • Nielson GN, Barbastathis G (2006) Dynamic pull-in of parallel-plate and torsional electrostatic mems actuators. J Microelectromech Syst 15(4):811–821

    Article  Google Scholar 

  • Perez MA, Shkel AM (2008) The effect of squeeze film constriction on bandwidth improvement in interferometric accelerometers. J Micromech Microeng 18:055031

    Article  Google Scholar 

  • Pratap R, Mohite S, Pandey AK (2007) Squeeze films effects in MEMS devices. J Indian Inst Sci 87:75–94

    Google Scholar 

  • Raman A, Melcher J, Tung R (2008) Cantilever dynamics in atomic force microscopy. Nanotoday 3(1–2):20–27

    Google Scholar 

  • Renno JM, Daqaq MF, Inman DJ (2009) On the optimal energy harvesting from a vibration source. J Sound Vib 320:386–405

    Article  Google Scholar 

  • Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intell Mater Syst Struct 16:809–823

    Article  Google Scholar 

  • Rützel S, Lee SI, Raman A (2003) Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proc R Soc London A 459:1925–1948

    Article  MATH  Google Scholar 

  • Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84(1):64–76

    Article  Google Scholar 

  • Schitter G, Åström KJ, DeMartini BE, Thurner PJ, Turner KL, Hansma PK (2007) Design and modeling of a high-speed AFM-scanner. IEEE Trans Control Syst Technol 15(5):906–915

    Article  Google Scholar 

  • Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021

    Article  Google Scholar 

  • Spreemann D, Hoffmann D, Folkmer B, Manoli Y (2008) Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration. J Micromech Microeng 18:104001

    Article  Google Scholar 

  • Stark RW, Schitter G, Stemmer A (2003) Tuning the interaction forces in tapping mode atomic force microscopy. Phys Rev B 68:085401-1

    Article  Google Scholar 

  • Stephen NG (2006) On energy harvesting from ambient vibration. J Sound Vib 293:409–425

    Article  Google Scholar 

  • Stokes SS (1901) Mathematical and physical papers, Vol. III. Cambridge University Press, London

    MATH  Google Scholar 

  • Tilmans HAC (1996) Equivalent circuit representation of electromechanical transducers: I. Lumped parameter systems. J Micromech Microeng 6(1):157–176

    Article  Google Scholar 

  • Tuma JJ (1979) Engineering mathematics handbook, 2nd edn. McGraw Hill, New York

    MATH  Google Scholar 

  • Veijola T (2004) Compact models for squeezed-film dampers with inertial and rarefied gas effects. J Micromech Microeng 14:1109–1118

    Article  Google Scholar 

  • Veijola T, Kuisma H, Lahdenpera J, Ryhanen T (1995) Equivalent-circuit model of the squeezed gas film in a silicon accelerometer. Sens Actuators A 48:239–248

    Article  Google Scholar 

  • Wang K, Nguyen CT-C (1997) High-order microelectromechanical electronic filters. Proceedings, 10th Annual International Workshop on Micro Electro Mechanical Systems, IEEE Robotics and Automation Society, pp 25–30

    Google Scholar 

  • Younis MI, Miles R, Jordy D (2006) Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. J Micromech Microeng 16:2463–2474

    Article  Google Scholar 

  • Zhang WM, Meng G, Zhou J-B, Chen J-Y (2009) Nonlinear dynamics and chaos of microcantilever-based TM-AFMs with squeeze film effects. Sensors 9:3854–3874

    Article  Google Scholar 

  • Zhang Y, Zhao Y (2006) Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens Actuators A 127:366–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward B. Magrab .

Appendix 2.1 Forces on a Submerged Vibrating Cylinder

Appendix 2.1 Forces on a Submerged Vibrating Cylinder

Consider a very long rigid solid circular cylinder of diameter b and length L that is immersed in an incompressible viscous fluid of density ρ f and dynamic viscosity μ f . It is assumed that the fluid can be modeled by the linearized momentum equations, which in terms of the scalar stream function \(\psi = \psi \left(r,\theta ,t\right)\) is given by (Stokes 1901, pp. 38–47)

$$\nabla ^2 \left( {\nabla ^2 \psi - \frac{{\rho _f }}{{\mu _f }}\frac{{\partial \psi }}{{\partial t}}} \right) = 0$$
((2.247))

where

$$\nabla ^2 = \frac{{\partial ^2 }}{{\partial r^2 }} + \frac{1}{r}\frac{\partial }{{\partial r}} + \frac{1}{{r^2 }}\frac{{\partial ^2 }}{{\partial \theta ^2 }}.$$
((2.248))

A solution to Eq. (2.247) is \(\psi = \psi _1 + \psi _2\), where ψ 1 and ψ 2, respectively, are solutions to

$$\begin{array}{rl} \nabla ^2 \psi _1 =& 0 \\ \nabla ^2 \psi _2 - \dfrac{{\rho _f }}{{\mu _f }}\dfrac{{\partial \psi _2 }}{{\partial t}} =& 0. \\ \end{array}$$
((2.249))

The velocities of the fluid are given by

$$u_r = \frac{1}{r}\frac{{\partial \psi }}{{\partial \theta }},\quad{\textrm{ }}u_\theta = - \frac{{\partial \psi }}{{\partial r}}.$$
((2.250))

We assume that the origin of the polar coordinate system is at the center of the cylinder, and that the cylinder is undergoing forced harmonic oscillations at frequency ω of the form

$$\begin{array}{rl} u_r \left(b/2,\theta ,t\right) =& u_o \cos \theta e^{j\omega t} \\ u_\theta \left(b/2,\theta ,t\right) =& - u_o \sin \theta e^{j\omega t} \\ \end{array}$$
((2.251))

where u o is the magnitude of the velocity. It is further assumed that the surrounding fluid is infinite in extent, that is, as \(r \to \infty\), \(u_r \to 0\) and \(u_\theta \to 0\).

In view of the boundary conditions given by Eq. (2.251), we assume solutions to Eq. (2.249) of the form

$$\psi _k = \Psi _k \left(r\right)\sin \theta e\,^{j\omega t} {\textrm{\quad }}k = 1,2.$$
((2.252))

Substituting Eq. (2.252) into Eq. (2.249) yields

$$\nabla _r^2 \Psi _1 = 0$$
((2.253))

and

$$\nabla _r^2 \Psi _2 - \frac{{j\omega \rho _f }}{{\mu _f }}\Psi _2 = 0$$
((2.254))

where

$$\nabla _r^2 = \frac{{\partial ^2 }}{{\partial r^2 }} + \frac{1}{r}\frac{\partial }{{\partial r}} - \frac{1}{{r^2 }}.$$
((2.255))

The solution to Eq. (2.253) is

$$\Psi _1 = \frac{{C_1 }}{r} + C_2 r.$$
((2.256))

To satisfy the requirements that as \(r \to \infty\), \(u_r \to 0\) and \(u_\theta \to 0\), we must set C 2 = 0. Then, Eq. (2.256) becomes

$$\Psi _1 = \frac{{C_1 }}{r}.$$
((2.257))

To determine the solution to Eq. (2.254), we rewrite it as

$$r^2 \frac{{\partial ^2 \Psi _2 }}{{\partial r^2 }} + r\frac{{\partial \Psi _2 }}{{\partial r}} - \left( {\left( {\frac{{2\lambda r}}{b}} \right)^2 + 1} \right)\Psi _2 = 0$$
((2.258))

where

$$\begin{array}{rl} \lambda = & \sqrt {j\,{\textrm{Re}} } \\ {\textrm{Re}} =& \dfrac{{\rho _f \omega b^2 }}{{4\mu _f }}. \\ \end{array}$$
((2.259))

and Re is the Reynolds number . The solution to Eq. (2.258) is

$$\Psi _2 = C_3 I_1 \left(2\lambda r/b\right) + C_4 K_1 \left(2\lambda r/b\right)$$
((2.260))

where I 1(x) is the modified Bessel function of the first kind of order 1 and K 1(x) is the modified Bessel function of the second kind of order 1. To satisfy the requirements that as \(r \to \infty\), \(u_r \to 0\) and \(u_\theta \to 0\), we must set C 3 = 0. Then, Eq. (2.260) becomes

$$\Psi _2 = C_4 K_1 \left(2\lambda r/b\right).$$
((2.261))

Thus, from Eqs. (2.257) and (2.261),

$$\begin{array}{rl} \psi = & \Psi \left(r\right)\sin \theta e\,^{j\omega t} = \left( {\Psi _1 + \Psi _2 } \right)\sin \theta e\,^{j\omega t} \\ {}=& \left( {\dfrac{{C_1 }}{r} + C_4 K_1 \left(2\lambda r/b\right)} \right)\sin \theta e\,^{j\omega t} . \\ \end{array}$$
((2.262))

Then, from Eq. (2.250) and (2.262),

$$\begin{array}{rl} u_r = & \displaystyle\frac{1}{r}\left( {\frac{{C_1 }}{r} + C_4 K_1 \left(2\lambda r/b\right)} \right)\cos \theta e^{j\omega t} \\ u_\theta = & \displaystyle\left( {\frac{{C_1 }}{{r^2 }} + \frac{{2\lambda C_4 }}{b}\left[ {\frac{b}{{2\lambda r}}K_1 \left(2\lambda r/b\right) + K_0 \left(2\lambda r/b\right)} \right]} \right)\sin \theta e^{j\omega t} . \\ \end{array}$$
((2.263))

The constants C 1 and C 4 are determined by substituting Eq. (2.263) into the boundary conditions given by Eq. (2.251). This substitution results in

$$\begin{array}{rl} u_o =&\displaystyle \frac{{4C_1 }}{{b^2 }} + \frac{2}{b}C_4 K_1 \left(\lambda \right) \\ - u_o = &\displaystyle\frac{{4C_1 }}{{b^2 }} + \frac{{2\lambda C_4 }}{b}\left[ {\frac{1}{\lambda }K_1 \left(\lambda \right) + K_0 \left(\lambda \right)} \right]. \\ \end{array}$$
((2.264))

Solving Eq. (2.264) for C 1 and C 4, we obtain

$$\begin{array}{rl} C_1 =&\displaystyle \frac{{u_o b^2 }}{4}\left( {\frac{2}{\lambda }\frac{{K_1 \left(\lambda \right)}}{{K_0 \left(\lambda \right)}} + 1} \right) \\ C_4 =&\displaystyle - \frac{{u_o b}}{{\lambda K_0 \left(\lambda \right)}}. \\ \end{array}$$
((2.265))

Then Eqs. (2.261) and (2.257), respectively, become

$$\Psi _2 = - u_o b\frac{{K_1 \left(2\lambda r/b\right)}}{{\lambda K_0 \left(\lambda \right)}}$$
((2.266))

and

$$\Psi _1 = \frac{{u_o b^2 }}{{4r}}\left( {\frac{2}{\lambda }\frac{{K_1 \left(\lambda \right)}}{{K_0 \left(\lambda \right)}} + 1} \right).$$
((2.267))

The force F acting on the cylinder of length L at \(r = b/2\) is determined from

$$F = L\frac{b}{2}\int\limits_0^{2\pi } {\left[ {P_r \cos \theta - P_\theta \sin \theta } \right]d\theta } $$
((2.268))

where

$$\begin{array}{rl} P_r =&\displaystyle - \left( p \right)_{r = b/2} + 2\mu _f \left( {\frac{{\partial u_r }}{{\partial r}}} \right)_{r = b/2} \\ P_\theta = & \displaystyle\mu _f \left\{ {\left( {\frac{1}{r}\frac{{\partial u_r }}{{\partial \theta }}} \right)_{r = b/2} + \left( {\frac{{\partial u_\theta }}{{\partial r}}} \right)_{r = b/2} - \left( {\frac{{u_\theta }}{r}} \right)_{r = b/2} } \right\} \\ \end{array}$$
((2.269))

and p is the pressure in the fluid. We now use our previous results to evaluate each of the terms appearing in Eq. (2.269). From the velocity relations given by Eq. (2.250) and the boundary conditions given by Eq. (2.251), it is seen that

$$\begin{array}{rl} \displaystyle\left( {\frac{{\partial u_r }}{{\partial r}}} \right)_{r = b/2} =& \displaystyle\left[ {\frac{1}{r}\left( { - \frac{1}{r}\frac{{\partial \psi }}{{\partial \theta }} + \frac{{\partial ^2 \psi }}{{\partial r\partial \theta }}} \right)} \right]_{r = b/2} = \left[ {\frac{1}{r}\left( { - u_r - \frac{{\partial u_\theta }}{{\partial \theta }}} \right)} \right]_{r = b/2} \\ {}=& \displaystyle\frac{2}{b}\left( { - u_o \cos \theta e\,^{j\omega t} + u_o \frac{\partial }{{\partial \theta }}\left( {\sin \theta } \right)e\,^{j\omega t} } \right) = 0 \\ \displaystyle\left( {\frac{1}{r}\frac{{\partial u_r }}{{\partial \theta }}} \right)_{r = b/2} =& \displaystyle\left( {\frac{1}{{r^2 }}\frac{{\partial ^2 \psi }}{{\partial \theta ^2 }}} \right)_{r = b/2} = \frac{2}{b}\frac{\partial }{{\partial \theta }}\left( {u_o \cos \theta e\,^{j\omega t} } \right) \\ {}=& \displaystyle\frac{2}{b}\left( { - u_o \sin \theta e\,^{j\omega t} } \right) = \left( {\frac{{u_\theta }}{r}} \right)_{r = b/2} . \\ \end{array}$$
((2.270))

Furthermore, from Eqs. (2.248) to (2.250) and Eq. (2.270),

$$\begin{array}{rl} \displaystyle\left( {\frac{{\partial u_\theta }}{{\partial r}}} \right)_{r = b/2} =&\displaystyle \left( { - \frac{{\partial ^2 \psi }}{{\partial r^2 }}} \right)_{r = b/2} = \left( {\frac{1}{r}\frac{{\partial \psi }}{{\partial r}}} \right)_{r = b/2} + \left( {\frac{1}{{r^2 }}\frac{{\partial ^2 \psi }}{{\partial \theta ^2 }}} \right)_{r = b/2} - \frac{{\rho _f }}{{\mu _f }}\frac{{\partial \psi _2 }}{{\partial t}} \\ {}=&\displaystyle \left( { - \frac{{u_\theta }}{r}} \right)_{r = b/2} + \left( {\frac{{u_\theta }}{r}} \right)_{r = b/2} - \frac{{\rho _f }}{{\mu _f }}\frac{{\partial \psi _2 }}{{\partial t}} \\ {}=&\displaystyle - \frac{{\rho _f }}{{\mu _f }}\frac{{\partial \psi _2 }}{{\partial t}}. \\ \end{array}$$
((2.271))

Using Eqs. (2.270) and (2.271) in Eq. (2.269), we obtain

$$\begin{array}{rl} P_r =& - \left( p \right)_{r = b/2} \\ P_\theta =& - \rho _f \dfrac{{\partial \psi _2 }}{{\partial t}}. \\ \end{array}$$
((2.272))

Then, Eq. (2.268) becomes

$$F = - L\frac{b}{2}\int\limits_0^{2\pi } {\left( p \right)_{r = b/2} \cos \theta d\theta } + L\rho _f \frac{b}{2}\int\limits_0^{2\pi } {\frac{{\partial \psi _2 }}{{\partial t}}\sin \theta d\theta } .$$
((2.273))

We now use integration by parts on the first integral of Eq. (2.273) to obtain

$$\begin{array}{rl} F_1 =&\displaystyle - L\frac{b}{2}\left[ { {\sin \theta } \Big|_0^{2\pi } - \int\limits_0^{2\pi } {\left( {\frac{{dp}}{{d\theta }}} \right)_{r = b/2} \sin \theta d\theta } } \right] \\ {}=&\displaystyle L\frac{b}{2}\int\limits_0^{2\pi } {\left( {\frac{{dp}}{{d\theta }}} \right)_{r = b/2} \sin \theta d\theta } . \\ \end{array}$$
((2.274))

It can be shown that (Stokes 1901, p. 39)

$$\frac{{\partial p}}{{\partial \theta }} = \rho _f \frac{\partial }{{\partial t}}\left( {r\frac{{\partial \psi _1 }}{{\partial r}}} \right).$$

Therefore, Eq. (2.274) becomes

$$F_1 = L\rho _f \frac{b}{2}\int\limits_0^{2\pi } {\left( {\frac{\partial }{{\partial t}}\left( {r\frac{{\partial \psi _1 }}{{\partial r}}} \right)} \right)_{r = b/2} \sin \theta d\theta } $$
((2.275))

and Eq. (2.273) can be written as

$$F = L\rho _f \frac{b}{2}\frac{\partial }{{\partial t}}\int\limits_0^{2\pi } {\left( {r\frac{{\partial \psi _1 }}{{\partial r}} + \psi _2 } \right)_{r = b/2} \sin \theta d\theta } .$$
((2.276))

Substituting Eqs. (2.252), (2.266), and (2.267) into Eq. (2.276), we arrive at

$$\begin{array}{rl} F =&\displaystyle j\omega L\rho _f e\,^{j\omega t} \frac{b}{2}\int\limits_0^{2\pi } {\left( {r\frac{{\partial \Psi _1 }}{{\partial r}} + \Psi _2 } \right)_{r = b/2} \sin ^2 \theta d\theta } \\ {}=&\displaystyle j\omega L\rho _f \pi e\,^{j\omega t} \frac{b}{2}\left( {r\frac{{\partial \Psi _1 }}{{\partial r}} + \Psi _2 } \right)_{r = b/2} \\ {}=&\displaystyle - j\omega u_o L\rho _f \pi e\,^{j\omega t} \frac{{b^2 }}{2}\left( {\frac{b}{{4r}}\left( {\frac{2}{\lambda }\frac{{K_1 \left(\lambda \right)}}{{K_0 \left(\lambda \right)}} + 1} \right) + \frac{{K_1 \left(2\lambda r/b\right)}}{{\lambda K_0 \left(\lambda \right)}}} \right)_{r = b/2} \\{} =&\displaystyle - j\omega u_o e\,^{j\omega t} M_f \Gamma _{cir} \left(\omega \right) \\ \end{array}$$
((2.277))

where

$$\begin{array}{rl} M_f =&\displaystyle \rho _f \pi \frac{{b^2 }}{4}L \\ \Gamma _{cir} \left(\omega \right) =&\displaystyle \left( {1 + \frac{4}{\lambda }\frac{{K_1 \left(\lambda \right)}}{{K_0 \left(\lambda \right)}}} \right) \\ \end{array}$$
((2.278))

The quantity M f is the mass of the fluid displaced by the cylinder and Γ cir is a complex quantity called a hydrodynamic function . The force acting on the cylinder is obtained by taking the real part of F, which is

$$F_f = {\textrm{Real}}\left(F\right) = \omega u_o M_f \left[ {{\textrm{Real}}\left(\Gamma _{cir} \right)\sin \left(\omega t\right) + {\textrm{Imag}}\left(\Gamma _{cir} \right)\cos \left(\omega t\right)} \right].$$
((2.279))

If the harmonic displacement of the cylinder in the x-direction is given by \(x = X_o \sin \left(\omega t\right)\), then Eq. (2.279) can be written as

$$F_f = - M_f\, {\textrm{Re}} \left(\Gamma _{cir} \right)\ddot x + M_f\, {\textrm{Im}} \left(\Gamma _{cir} \right)\dot x$$
((2.280))

where the over dot indicate the derivate with respect to time and we have recognized that for harmonic oscillations \(u_o = \omega X_o\). On the other hand, if the harmonic displacement of the cylinder in the x-direction is given by \(x = X_o e^{j\omega t}\), then Eq. (2.277) can be written as

$$F = X_o \omega ^2 e\,^{j\omega t} M_f \Gamma _{cir} \left(\omega \right).$$
((2.281))

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Magrab, E.B. (2012). Spring-Mass Systems. In: Vibrations of Elastic Systems. Solid Mechanics and Its Applications, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2672-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2672-7_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2671-0

  • Online ISBN: 978-94-007-2672-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics