Skip to main content

Elastic-Plastic Damage

  • Chapter
  • First Online:
  • 7148 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 185))

Abstract

The preceding chapters were concerned with the notion and the fundamental theories of continuum damage mechanics (CDM). Hereafter we will discuss the application of CDM to damage and fracture phenomena encountered in wide range of engineering problems. The present chapter starts with the modeling of elastic-plastic damage and its application. In Section 6.1, we summarized the constitutive and the evolution equations of elastic-plastic isotropic damage of materials developed in Chapter 4, and discuss their application to the problems of ductile damage, brittle damage and quasi-brittle damage. Section 6.2, on the other hand, is concerned with the detailed discussion of ductile damage process, i.e., the discussion of physical and mechanical aspects of ductile damage, their mechanical modeling and its analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We should note that the variable Y thus defined, strictly speaking, has not the thermodynamically associated relation with the damage variable D of Eq. (6.110).

  2. 2.

    In the argument of this subsection, the symbol R will be reserved to signify the average radius of spherical voids. Hence to avoid the repeated use of the symbol, the isotropic hardening variable R and its associated internal variable r will be replaced here by different symbols P and p.

  3. 3.

    A parameter \(\mu = (2\sigma_2 - \sigma_1 - \sigma_3)/(\sigma_1 - \sigma_3)\) is called Lode (stress) parameter, where \(\sigma_1 \geq \sigma_2 \geq \sigma_3\) are principal stresses.

References

  • Besson J, Cailletaud G, Chaboche J-L, Forest S, Blétry M (2010) Non-linear mechanics of materials. Springer, Dordrecht

    Google Scholar 

  • Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98

    Article  Google Scholar 

  • Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72:1049–1069

    Article  Google Scholar 

  • Benzerga AA (2002) Micromechanics of coalescence in ductile fracture. J Mech Phys Solids 50:1331–1362

    Article  MATH  Google Scholar 

  • Benzerga AA, Besson J, Pineau A (2004a) Anisotropic ductile fracture, part I: experiments. Acta Mater 52:4623–4638

    Article  Google Scholar 

  • Benzerga AA, Besson J, Pineau A (2004b) Anisotropic ductile fracture, part II: theory. Acta Mater 52:4639–4650

    Article  Google Scholar 

  • Berg CA (1970) Plastic dilatation and void interaction. In: Kanninen MF et al (eds) Inelastic behavior of solids. McGraw-Hill, New York, pp 171–210

    Google Scholar 

  • Besson J (2010) Continuum models of ductile fracture: a review. Int J Damage Mech 19:3–52

    Article  Google Scholar 

  • Besson J, Steglich D, Brocks W (2003) Modeling of plane strain ductile rupture. Int J Plast 19:1517–1541

    Article  MATH  Google Scholar 

  • Bonora N (1997) A nonlinear CDM model for ductile failure. Eng Fract Mech 58:11–28

    Article  Google Scholar 

  • Bonora N, Gentile D, Pirondi A, Newaz G (2005) Ductile damage evolution under triaxial state of stress: theory and experiments. Int J Plast 21:981–1007

    Article  MATH  Google Scholar 

  • Brownrigg A, Spitzig WA, Richmond O, Teirlinck D, Embury JD (1983) The influence of hydrostatic pressure on the flow stress and ductility of spherodized 1045 steel. Acta Metall 31:1141–1150

    Article  Google Scholar 

  • Chaboche JL (1986) Time independent constitutive theories for cyclic plasticity. Int J Plast 2:149–188

    Article  MATH  Google Scholar 

  • Chaboche JL, Boudifa M, Saanouni K (2006) A CDM approach of ductile damage with plastic compressibility. Int J Fract 137:51–75

    Article  MATH  Google Scholar 

  • Chandrakanth S, Pandey PC (1993) A new ductile damage evolution model. Int J Fract 60:73–76

    Google Scholar 

  • Chow CL, Jie M (2004) Forming limits of AL6022 sheets with material damage consideration -theory and experimental validation. Int J Mech Sci 46:99–122

    Article  Google Scholar 

  • Chow CL, Yang XJ (2004) A generalized mixed isotropic-kinematic hardening plastic model coupled with anisotropic damage for sheet metal forming. Int J Damage Mech 13:81–101

    Article  Google Scholar 

  • Chow CL, Yu LG, Demeri MY (1997) A unified damage approach for predicting forming limit diagrams. J Eng Mater Technol Trans ASME 119:346–353

    Article  Google Scholar 

  • Chow CL, Yu IG, Tai WH, Demeri MY (2001) Prediction of forming limit diagrams for AL6111-T4 under non-proportional loading. Int J Mech Sci 43:471–486

    Article  MATH  Google Scholar 

  • Chow CL, Jie M, Wu X (2007) Localized necking criterion for strain- softening materials with anisotropic damage. Int J Damage Mech 16:265–281

    Article  Google Scholar 

  • Chu CC, Needleman A (1980) Void nucleation effects in biaxially stretched sheets. J Eng Mater Technol Trans ASME 102:249–256

    Article  Google Scholar 

  • Desmorat R, Kane A, Seyedi M, Sermage JP (2007) Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue. Eur J Mech A/Solids 26:909–935

    Article  MATH  Google Scholar 

  • Gologanu M, Leblond JB, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids – case of symmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754

    Article  MATH  Google Scholar 

  • Gologanu M, Leblond JB, Devaux J (1994) Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Technol Trans ASME 116:290–294

    Article  Google Scholar 

  • Graf A, Hosford W (1994) The influence of strain-path changes on forming limit diagrams of A 6111-T4. Int J Mech Sci 36:897–910

    Article  Google Scholar 

  • Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I Yield criteria and flow rules for porous ductile media. J Eng Mater Technol Trans ASME 99:2–15

    Article  Google Scholar 

  • Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–169

    Article  Google Scholar 

  • Leblond JB, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A/Solids 14:499–527

    MathSciNet  MATH  Google Scholar 

  • Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol Trans ASME 107:83–89

    Article  Google Scholar 

  • Lemaitre J (1990) Micro-mechanics of crack initiation. Int J Frac 42:87–99

    Article  Google Scholar 

  • Lemaitre J (1992) A course on damage mechanics. Springer, Berlin; 2nd Edition (1996)

    MATH  Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, Belrin

    Google Scholar 

  • Lemaitre J, Doghri I (1994) Damage 90: a post-processor for crack initiation. Comput Methods Appl Mech Eng 115:197–232

    Article  Google Scholar 

  • Lemaitre J, Sermage JP, Desmorat R (1999) A two scale damage concept applied to fatigue. Int J Fract 97:67–81

    Article  Google Scholar 

  • Mahnken R (2002) Theoretical, numerical and identification aspects of a new model class for ductile damage. Int J Plast 18:801–831

    Article  MATH  Google Scholar 

  • Mazars J (1986) A description of micro- and macro-scale damage of concrete structures. Eng Fract Mech 25:729–737

    Article  Google Scholar 

  • Nahshon K, Hutchinson JW (2008) Modification of the Gurson model for shear failure. Eur J Mech A/Solids 27:1–17

    Article  MATH  Google Scholar 

  • Nahshon K, Xue Z (2009) A modified Gurson model and its application to puch-out experiments. Eng Fract Mech 76:997–1009

    Article  Google Scholar 

  • Needleman A, Triantafyllidis N (1978) Void growth and local necking in biaxially stretched sheets. J Eng Mater Technol Trans ASME 100:164–169

    Article  Google Scholar 

  • Needleman A, Tvergaard V (1984) An analysis of ductile rupture in notched bars. J Mech Phys Solids 32:461–490

    Article  Google Scholar 

  • Ohno N, Wang JD (1994) Kinematic hardening rules for simulation of ratchetting behavior. Eur J Mech A/Solids 13:519–531

    MATH  Google Scholar 

  • Oñate E, Kleiber M, Saracibar CA (1988) Plastic and viscoplastic flow of void-containing metals; applications to axisymmetric sheet forming problems. Int J Numer Methods Eng 25:227–251

    Article  MATH  Google Scholar 

  • Pardoen T (2006) Numerical simulation of low stress triaxiality ductile fracture. Comput Struct 84:1641–1650

    Article  Google Scholar 

  • Pedersen TO (2000) Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools. Int J Mech Sc 42:799–818

    Article  MATH  Google Scholar 

  • Pirondi A, Bonora N (2003) Modeling ductile damage under fully reversed cycling. Comput Mater Sci 26:129–141

    Article  Google Scholar 

  • Rice JR, Tracy DM (1969) On ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:210–217

    Article  Google Scholar 

  • Rousselier G (1981) Finite deformation constitutive relations including ductile fracture damage. In: Nemat-Nasser S (ed) Three-dimensional constitutive relations and ductile fracture. North-Holland, Amsterdam, pp 331–355

    Google Scholar 

  • Rousselier G (1987) Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 105:97–111

    Article  Google Scholar 

  • Saanouni K (ed) (2003) Numerical modelling in damage mechanics. Kogan Page Science, London

    Google Scholar 

  • Saanouni K (2006) Virtual metal forming including the ductile damage occurrence: actual state of the art and main perspectives. J Mater Process Technol 177:19–25

    Article  Google Scholar 

  • Saanouni K, Chaboche JL (2003) Computational damage mechanics: application to metal forming. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, vol 3. Elsevier, Oxford, pp 321–376

    Chapter  Google Scholar 

  • Saanouni K, Nesnas K, Hammi Y (2000) Damage modeling in metal forming processes. Int J Damage Mech 9:196–240

    Google Scholar 

  • Saanouni K, Mariage JF, Cherouat A, Lestriez P (2004) Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics. Comput Struct 82:2309–2332

    Article  Google Scholar 

  • Saanouni K, Lestriez P, Labergère C (2011) 2D adaptive FE simulations in finite thermo-elasto-viscoplasticity with ductile damage: application to orthogonal metal cutting by chip formation and breaking. Int J Damage Mech 20:23–61

    Article  Google Scholar 

  • Tai WH, Yang BX (1986) A new microvoid-damage model for ductile fracture. Eng Fract Mech 25:377–384

    Article  Google Scholar 

  • Tanaka E (1994) A nonproportionality parameter and a cyclic viscoplasic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur J Mech A/Solids 13:155–173

    MATH  Google Scholar 

  • Thomason PF (1990) Ductile fracture of metals. Pergamon Press, Oxford

    Google Scholar 

  • Thomson RD, Hancock JW (1984) Ductile failure by void nucleation, growth and coalescence. Int J Fract 26:99–112

    Article  Google Scholar 

  • Tvergaard V (1990) Material failure by void growth to coalescence. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 27. Academic, New York, pp 83–151

    Google Scholar 

  • Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169

    Article  Google Scholar 

  • Xia L, Shih C, Hutchinson J (1995) A computational approach to ductile crack growth under large scale yielding conditions. J Mech Phys Solids 43:389–413

    Article  MATH  Google Scholar 

  • Besson J, Guillemer-Neel C (2003) An extension of the Green and Gurson models to kinematic hardening. Mech Mater 35:1–18

    Article  Google Scholar 

  • Brünig M, Chyra O, Albrecht D, Driemeier L, Alves M (2008) A ductile damage criterion at various stress triaxialities. Int J Plast 24:1731–1755

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Murakami .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Murakami, S. (2012). Elastic-Plastic Damage. In: Continuum Damage Mechanics. Solid Mechanics and Its Applications, vol 185. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2666-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2666-6_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2665-9

  • Online ISBN: 978-94-007-2666-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics