Skip to main content

Materials Processing by Use of a High Intensity Magnetic Field

  • Chapter
  • First Online:

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 99))

Abstract

Non-magnetic substances such as water, plastic, wood, etc. can be levitated when a magnetic field over 20 T is imposed [1]. This phenomenon is based on the established fact that a magnetization force, which is a well-known force attracting an iron to a magnet, is significantly intensified by a high magnetic field. Thus, in recent times, much attention has been paid to this force. As an example, a super-conducting magnet with a cryostat, which does not require liquid helium as a coolant, has been developed so that a highly intensified magnetic field, as much as 10 T, has become easily available in ordinary laboratories in universities. Effects of a high magnetic field have been examined in a large number of natural science fields such as physics, chemistry and biology and have found many new and interesting phenomena that can not be observed under the ordinary intensity of a magnetic field provided by electric or permanent magnets. For example, Fig. 5.1 shows a water surface depressed by imposition of a high magnetic field. This phenomenon is called the Moses effect for the escape from Egypt story written in the Old Testament [2]. As the second example, Fig. 5.2 shows a living frog being levitated in the bore of a super-conducting magnet, where a gravity force is balanced with a magnetization force [3]. Furthermore, Fig. 5.3 shows that the flame of a candle is deformed by a magnetic field with a gradient. In fact, this phenomenon was first found by Faraday in the nineteenth century and has been understood as an effect of the magnetization force. In addition, various interesting phenomena, such as that the vaporizing rate of water is accelerated and the absorption rate of oxygen gas into water is increased by the imposition of a high magnetic field, have been reported [4, 5]. These circumstances have in recent years given further development of the concept of “Magneto-Science”, a subject of research that impacts a variety of science in which high magnetic fields are significant. Reported phenomena relating to “Materials Science” have provided useful information on the creation of new materials, leading finally to the combined identification of “Electromagnetic Processing of Materials” [6]. Of course the Materials Science relating to a high magnetic field is obviously based on a number of principles of physics such as the magnetization force, the Lorentz force, the Zeeman effect, etc., and these principles are combined in complex ways in both physical and chemical phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet, Nature 349, 770 (1991)

    Article  Google Scholar 

  2. N. Hirota, T. Honma, H. Sugawara, K. Kitazawa, M. Iwasaka, S. Ueno, H. Yokoi, Y. Kakudate, S. Fujiwara, M. Kawamura, Jpn. J. Appl. Phys. 34, L991 (1995)

    Article  CAS  Google Scholar 

  3. M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997)

    Article  Google Scholar 

  4. J. Nakagawa, N. Hirota, K. Kitazawa, M. Syoda, in 1st Symposium on New Magnetic-science Program & Abstracts, Nov 1997, p. 226

    Google Scholar 

  5. Y. Ikezoe, N. Hirota, T. Sakihama, K. Mogi, H. Uetake, J. Nakagawa, K. Su Gawara, K. Kitazawa, in 1st Symposium on New Magnetic-Science Program & Abstracts, Nov 1997, p. 231

    Google Scholar 

  6. S. Asai, J. Jpn. Inst. Met. 61, 1271 (1997)

    CAS  Google Scholar 

  7. E. Beaugnon, T. Tournier, Nature 349, 470 (1991)

    Article  Google Scholar 

  8. A. Lusnikov, L.L. Miller, R.W. McCaullum, S. Mitra, W.C. Lee, D.C. Johnson, J. Appl. Phys. 65, 3136 (1989)

    Article  CAS  Google Scholar 

  9. J.E. Tkazyk, K.W. Lay, J. Mater. Res. 5, 1368 (1990)

    Article  Google Scholar 

  10. P. de Rango, M. Lee, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Gerni, M. Pernet, Nature 349, 770 (1991)

    Article  Google Scholar 

  11. R.H. Arendt, M.F. Garbauskas, K.W. Lay, J.E. Tkaczyk, Physica. C 176, 131 (1991)

    Article  CAS  Google Scholar 

  12. A. Holloway, R.W. McCallun, S.R. Arrasmith, J. Mater. Res. 8, 727 (1993)

    Article  CAS  Google Scholar 

  13. S. Stassenn, R. Cloots, A. Rulmont, F. Gillet, H. Bougrine, P.A. Godelaine, A. Dang, M. Ausloos, Physica. C 235–240, 515 (1994)

    Article  Google Scholar 

  14. S. Stassenn, R. Cloots, Rh Vanderbemden, P.A. Godelaine, H. Bougrine, A. Rulmont, M. Ausloos, J. Mater. Res. 11, 1082 (1996)

    Article  Google Scholar 

  15. N. Hirota, T. Hon-ma, Kin-zoku 65(9), 793 (1995)

    CAS  Google Scholar 

  16. M. Matsui, MSJ Summer School, The Basis of Applied Magnetic (MSJ, 1995, 1996), p. 1

    Google Scholar 

  17. K. Ohta, Ziki Kougaku no Kiso (Kyoritsu Syuppan, 1993), p. 42

    Google Scholar 

  18. A.E. Mikelson, Kh Karkin, J Cryst. Growth 52, 524 (1981)

    Article  Google Scholar 

  19. H. Yasuda, K. Tokieda, I. Ohnaka, Mater. Trans. JIM 41, 1005 (2000)

    CAS  Google Scholar 

  20. B.A. Legrand, R. Perrier de la Bathie, R. Tournier, in Proceedings of Int. Cong. of Electromagnetic Processing of Materials, vol. 2, Paris, May 1997, p. 309

    Google Scholar 

  21. P. Courtois, R. Perrier de la Bathie, R. Tournier, in Proceedings of Int. Cong. of Electromagnetic Processing of Materials, vol. 2, Paris, May 1997, p. 277

    Google Scholar 

  22. T. Sugiyama, M. Tahashi, K. Sassa, S. Asai, Trans. ISIJ 43, 855 (2003)

    Article  CAS  Google Scholar 

  23. T. Taniguchi, K. Sassa, T. Yamada, S. Asai, Mater. Trans. JIM 41, 981 (2000)

    CAS  Google Scholar 

  24. M. Tahashi, K. Sassa, I. Hirabayashi, S. Asai, Mater. Trans. Jim 41, 985 (2000)

    CAS  Google Scholar 

  25. Y. Lu, A. Nagata, K. Watanabe, T. Nojima, K. Sugawara, S. Hanada, S. Kamada, Physica C 392, 453 (2003)

    Article  Google Scholar 

  26. S.S. He, Y.D.D. Zhang, X. Zhao, L. Zuo, J.C.C. He, K. Watanabe, T. Zhang, G. Nishijima, C. Esling, Adv. Eng. Mater. 5, 579 (2003)

    Article  CAS  Google Scholar 

  27. P. Chen, H. Maeda, K. Watanabe, M. Motokawa, Physica C 337, 160 (2000)

    Article  CAS  Google Scholar 

  28. P. Chen, H. Maeda, K. Watanabe, M. Motokawa, H. Kitaguchi, H. Kumakura, Physica C 324, 172 (1999)

    Article  CAS  Google Scholar 

  29. P. Chen, H. Maeda, K. Kakimoto, P.X. Zhang, K. Watanabe, M. Motokawa, Physica C 320, 96 (1999)

    Article  CAS  Google Scholar 

  30. M.H. Zimmerman, K.T. Faber, E.R. Fuller Jr., J. Am. Ceram. Soc. 80, 2725 (1997)

    Article  CAS  Google Scholar 

  31. E. Farrel, B.S. Chandrasekhar, M.R. DeGuire, M.M. Fang, V.G. Kogan, J.R. Clem, D.K. Finnemore, Phys. Rev. B 36, 4025 (1987)

    Article  Google Scholar 

  32. M. Ferreira, M.B. Maple, H. Zhou, R.R. Hake, B.W. Lee, C.L. Seaman, M.V. Kuric, R.P. Guertin, Appl. Phys. A 7, 105 (1988)

    Article  Google Scholar 

  33. W. Paulik, K.T. Faber, E.R. Fullar Jr., J. Am. Ceram. Soc. 77, 454 (1994)

    Article  CAS  Google Scholar 

  34. K. Inoue, K. Sassa, Y. Yokogawa, Y. Sakka, M. Okido, S. Asai, Mater. Trans. JIM 44, 1133 (2003)

    Article  CAS  Google Scholar 

  35. Y. Sakka, T.S. Suzuki, N. Tanabe, S. Asai, K. Kitazawa, Jpn. J. Appl. Phys. 41, 1416 (2002)

    Article  Google Scholar 

  36. M. Mizushima, J. Okada, Tanso Zairyou (Kyoritsu Syuppan, 1970), p. 157

    Google Scholar 

  37. C. Wu, S. Li, K. Sassa, Y. Chino, K. Hattori, S. Asai, Mater. Trans. 46, 1311 (2005)

    Article  CAS  Google Scholar 

  38. T.S. Suzuki, H. Otsuka, Y. Sakka, K. Hiraga, K. Kitazawa, J. Jpn. Soc. Powder Powder Metallurgy 47, 1010 (2000)

    Article  CAS  Google Scholar 

  39. T.S. Suzuki, Y. Sakka, K. Kitazawa, Adv. Eng. Mater. 3, 490 (2001)

    Article  CAS  Google Scholar 

  40. T. Kimura, Polym. J. 35, 823 (2003)

    Article  CAS  Google Scholar 

  41. S. Li, K. Sassa, K. Iwai, S. Asai, Mater. Trans. 45, 3124 (2004)

    Article  CAS  Google Scholar 

  42. T. Kimura, M. Yamato, W. Koshimizu, M. Koike, T. Kawai, Langmuir 16, 858 (2000)

    Article  CAS  Google Scholar 

  43. J. Akiyama, H. Asano, K. Iwai, S. Asai, J. Jpn. Inst. Met. 71, 108 (2007)

    Article  CAS  Google Scholar 

  44. T. Kimura, M. Yoshino, Langmuir 21, 4805 (2005)

    Article  CAS  Google Scholar 

  45. T. Kimura, F. Kimura, M. Yoshino, Langmuir 22, 3464 (2006)

    Article  CAS  Google Scholar 

  46. C. Wu, Y. Murakami, K. Sassa, K. Iwai, S. Asai, Key Eng. Mater. 75, 284 (2005)

    Google Scholar 

  47. M. Tahashi, M. Ishihara, K. Sassa, S. Asai, Mater. Trans. JIM 44, 285 (2003)

    Article  CAS  Google Scholar 

  48. Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa, Nature 393, 749 (1998)

    Article  CAS  Google Scholar 

  49. S. Asai, Zairyou Den-zi Purossesin-gu (Uchida Rokaku Ho, Tokyo, 2000), p. 103

    Google Scholar 

  50. N. Wakayama, J. Jpn. Inst. Met. 61, 1272 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Asai .

Appendix [47]

Appendix [47]

The orientation index of (\( {h_i},\,{k_i},{l_i} \)) plane \( {N_{{{h_i},{k_i},{l_i}}}} \) defined as Eq. 5.62, is evaluated from the X-ray diffraction patterns.

$$ {N_{{{h_i},\,{k_i},{l_i}}}} = {F_{{{h_i},{k_i},{l_i}}}}/F_{{{h_i},{k_i},{l_i}}}^0, $$
(5.62)

where \( {F_{{{h_i},{k_i},{l_i}}}} \) is an intensity fraction of a (\( {h_i},\,{k_i},\,{l_i} \)) plane and defined by Eq. 5.63 and \( F_{{{h_i},{k_i},{l_i}}}^0 \) is obtained from the standard data of JCPDS cards.

$$ {F_{{{h_i},{k_i},{l_i}}}} = {I_{{{h_i},{k_i},{l_i}}}}/({I_{{{h_5},{k_5},{l_5}}}} + {I_{{{h_2},{k_2},{l_2}}}} + {I_{{{h_3},{k_3},{l_3}}}} + \ldots \ldots + {I_{{{h_n},{k_n},{l_n}}}}), $$
(5.63)

where \( {I_{{{h_i},{k_i},{l_i}}}} \) is intensity for the diffraction line of (\( {h_i},\,{k_i},\,{l_i} \)).

Moreover, in order to comprehensively evaluate the over-all degree of crystalline texture, the definition of a relative facial angle \( {\theta_F} \) is obtained by Eq. 5.64.

$$ {\theta_F} = \sum {({I_{{{h_i},{k_i},{l_i}}}}\, \times \,{\theta_{{{h_i},{k_i},{l_i}}}})} /\sum {{I_{{{h_i},{k_i},{l_i}}}}} $$
(5.64)

\( {\theta_{{{h_i},{k_i},{l_i}}}} \) is the facial angle between \( ({h_i},{k_i},{l_i}) \) and (0, 0, n) planes. The relative facial angle \( {\theta_F} \) is reduced to 0° when all crystals are oriented to the (0, 0, n) plane and to 90° when oriented to the plane perpendicular to (0, 0, n).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Asai, S. (2012). Materials Processing by Use of a High Intensity Magnetic Field. In: Electromagnetic Processing of Materials. Fluid Mechanics and Its Applications, vol 99. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2645-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2645-1_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2644-4

  • Online ISBN: 978-94-007-2645-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics