Skip to main content

Current Status and Future Prospects of Nutraceuticals in Prostate Cancer

  • Chapter
  • First Online:
Nutraceuticals and Cancer
  • 1182 Accesses

Abstract

Nutraceuticals are products derived from food sources that provide health benefits. Several natural dietary agents have been studied for their preventive and/or therapeutic effects against prostate cancer. Although most of the information on nutraceuticals and prostate cancer is drawn from epidemiologic and case-control studies, clinical studies conducted so far have not provided clear-cut results. The lack of evidence-based studies limits the use of nutraceuticals and their clinical recommendations. In spite these limitations, the field of nutraceutical research continues to emerge as many of these nutritional agents are tested for their therapeutic potential in pre-clinical and clinical settings. Nutraceuticals have the potential for significant medical and economic impacts. This chapter highlights the present status of nutraceuticals in prostate cancer and discusses future prospects for nutritional strategies that are safe and clinically beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AICR:

American Institute for Cancer Research

AKR1C3:

aldo-keto reductase family 1 member C3

AR:

androgen receptor

CDK:

cyclin-dependent kinase

DIM:

3,3′-diindolylmethane

HSD3B2:

3 beta-hydroxysteroid dehydrogenase type 2

IGF:

insulin-like growth factor

IGFBP:

insulin-like growth factor binding protein

IL:

interleukin

MAPK:

mitogen activated protein kinase

mTOR:

mammalian target of rapamycin

NCCAM:

National Center for Complementary and Alternative Medicine

NEMO:

NF-Kappa-B essential modulator

NF-κB:

nuclear factor kappa B

NK:

natural killer cells

PEITC:

phenylethyl isothiocyanate

ppm:

parts per million

ProtecT:

prostate testing for cancer and treatment

SELECT:

selenium and vitamin E cancer prevention trial

SRD5A1:

steroid 5alpha reductase type 1

STAT:

signal transducer and activator of transcription

TGFβ1:

transforming growth factor beta 1

TRAMP:

transgenic adenocarcinoma of the mouse prostate

References

  • Adams KF, Chen C, Newton KM et al (2004) Soy isoflavones do not modulate prostate-specific antigen concentrations in older men in a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 13:644–648

    PubMed  CAS  Google Scholar 

  • Adhami VM, Ahmad N, Mukhtar H (2003) Molecular targets for green tea in prostate cancer prevention. J Nutr 133:2417–2424

    Google Scholar 

  • Adhami VM, Siddiqui IA, Ahmad N et al (2004) Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64:8715–8722

    PubMed  CAS  Google Scholar 

  • Adhami VM, Khan N, Mukhtar H (2009) Cancer chemoprevention by pomegranate: laboratory and clinical evidence. Nutr Cancer 61:811–815

    PubMed  Google Scholar 

  • Agarwal C, Singh RP, Agarwal R (2002) Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis 23:1869–1876

    PubMed  CAS  Google Scholar 

  • Agarwal C, Singh RP, Dhanalakshmi S et al (2004) Anti-angiogenic efficacy of grape seed extract in endothelial cells. Oncol Rep 11:681–685

    PubMed  Google Scholar 

  • Agus DB, Vera JC, Golde DW (1999) Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Cancer Res 59:4555–4558

    PubMed  CAS  Google Scholar 

  • Ahmad IU, Forman JD, Sarkar FH et al (2010) Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutr Cancer 62:996–1000

    PubMed  CAS  Google Scholar 

  • Al-Shukri SH, Deschaseaux P, Kuzmin IV et al (2000) Early urodynamic effects of the lipido-sterolic extract of Serenoa repens (Permixon®) in patients with lower urinary tract symptoms due to benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 3:195–199

    PubMed  Google Scholar 

  • Amagase H, Petesch BL, Matsuura H et al (2001) Intake of garlic and its bioactive components. J Nutr 131:955–962

    Google Scholar 

  • Ansari MS, Gupta NP (2004) Lycopene: a novel drug therapy in hormone refractory metastatic prostate cancer. Urol Oncol 22:415–420

    PubMed  CAS  Google Scholar 

  • Argao EA, Heubi JE (1993) Fat-soluble vitamin deficiency in infants and children. Curr Opin Pediatr 5:562–566

    PubMed  CAS  Google Scholar 

  • Arunkumar A, Vijayababu MR, Srinivasan N (2006) Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3. Mol Cell Biochem 288:107–113

    PubMed  CAS  Google Scholar 

  • Aust O, Ale-Agha N, Zhang L, Wollersen H et al (2003) Lycopene oxidation product enhances gap junctional communication. Food Chem Toxicol 41:1399–1407

    PubMed  CAS  Google Scholar 

  • Aziz MH, Kumar R, Ahmad N (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (review). Int J Oncol 23:17–28

    PubMed  CAS  Google Scholar 

  • Barranco WT, Eckhert CD (2006) Cellular changes in boric acid-treated DU-145 prostate cancer cells. Br J Cancer 94:884–890

    PubMed  CAS  Google Scholar 

  • Beevers CS, Li F, Liu L et al (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    PubMed  CAS  Google Scholar 

  • Bektic J, Berger AP, Pfeil K et al (2004) Androgen receptor regulation by physiological concentrations of the isoflavonoid genistein in androgen-dependent LNCaP cells is mediated by estrogen receptor beta. Eur Urol 45:245–251

    PubMed  CAS  Google Scholar 

  • Bettuzzi S, Brausi M, Rizzi F et al (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. Cancer Res 66:1234–1240

    PubMed  CAS  Google Scholar 

  • Blatt DH, Leonard SW, Traber MG (2001) Vitamin E kinetics and the function of tocopherol regulatory proteins. Nutrition 17:799–805

    PubMed  CAS  Google Scholar 

  • Blomhoff R, Green MH, Norum KR (1992) Vitamin A: physiological and biochemical processing. Annu Rev Nutr 12:37–57

    PubMed  CAS  Google Scholar 

  • Blutt SE, Allegretto EA, Pike JW et al (1997) 1,25-Dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology 138:1491–1497

    PubMed  CAS  Google Scholar 

  • Boileau TW, Liao Z, Kim S et al (2003) Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. JNCI 95:1578–1586

    PubMed  CAS  Google Scholar 

  • Bosetti C, Talamini R, Montella M et al (2004) Retinol, carotenoids and the risk of prostate cancer: a case-control study from Italy. Int J Cancer 112:689–692

    PubMed  CAS  Google Scholar 

  • Bowen P, Chen L, Stacewicz-Sapuntzakis M et al (2002) Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis. Exp Biol Med 227:886–893

    CAS  Google Scholar 

  • Brawley OW, Barnes S, Parnes H (2001) The future of prostate cancer prevention. Ann NY Acad Sci 952:145–152

    PubMed  CAS  Google Scholar 

  • Broitman SA, Wilkinson J IV, Cerda S (1996) Effects of monoterpenes and mevinolin on murine colon tumor CT-26 in vitro and its hepatic “metastases” in vivo. Adv Exp Med Biol 401: 111–130

    PubMed  CAS  Google Scholar 

  • Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10:949–954

    PubMed  CAS  Google Scholar 

  • Campbell JK, Canene-Adams K, Lindshield BL et al (2004) Tomato phytochemicals and prostate cancer risk. J Nutr 134: S3486–S3492

    Google Scholar 

  • Cardile V, Scifo C, Russo A, Falsaperla M et al (2003) Involvement of HSP70 in resveratrol-induced apoptosis of human prostate cancer. Anticancer Res 23:4921–4926

    PubMed  CAS  Google Scholar 

  • Chan JM, Giovannucci EL (2001) Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiol Rev 23:87–92

    PubMed  CAS  Google Scholar 

  • Chen TC, Wang L, Whitlatch LW et al (2003) Prostatic 25-hydroxyvitamin D-1alpha-hydroxylase and its implication in prostate cancer. J Cell Biochem 88:315–322

    PubMed  CAS  Google Scholar 

  • Chendil D, Ranga RS, Meigooni D et al (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23:1599–1607

    PubMed  CAS  Google Scholar 

  • Chiao JW, Chung F, Krzeminski J et al (2000) Modulation of growth of human prostate cancer cells by the N-acetylcysteine conjugate of phenethyl isothiocyanate. Int J Oncol 16:1215–1219

    PubMed  CAS  Google Scholar 

  • Chintharlapalli S, Papineni S, Ramaiah SK et al (2007) Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res 67:2816–2823

    PubMed  CAS  Google Scholar 

  • Chlopcikova S, Psotova J, Miketova P et al (2004) Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. I. Silymarin and its flavonolignans. Phytother Res 18:107–110

    PubMed  CAS  Google Scholar 

  • Cho SD, Jiang C, Malewicz B et al (2004) Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription. Mol Cancer Ther 3:605–611

    PubMed  CAS  Google Scholar 

  • Cho HJ, Park SY, Kim EJ et al (2011) 3,3'-Diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol Carcinog 50:100–112

    PubMed  CAS  Google Scholar 

  • Choan E, Segal R, Jonker D et al (2005) A prospective clinical trial of green tea for hormone refractory prostate cancer: an evaluation of the complementary/alternative therapy approach. Urol Oncol 23:108–113

    PubMed  CAS  Google Scholar 

  • Choi HY, Lim JE, Hong JH (2010) Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis 13:343–349

    PubMed  CAS  Google Scholar 

  • Clark LC, Dalkin B, Krongrad A et al (1998) Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br JUrol 81:730–734

    CAS  Google Scholar 

  • Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. JNCI 92:61–68

    PubMed  CAS  Google Scholar 

  • Collin SM, Metcalfe C, Refsum H et al (2010a) Circulating folate, vitamin B12, homocysteine, vitamin B12 transport proteins, and risk of prostate cancer: a case-control study, systematic review, and meta-analysis. Cancer Epidemiol Biomarkers Prev 19:1632–1642

    PubMed  CAS  Google Scholar 

  • Collin SM, Metcalfe C, Refsum H et al (2010b) Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 70:1127–1133

    Google Scholar 

  • Cook NR, Le IM, Manson JE et al (2000) Effects of beta-carotene supplementation on cancer incidence by baseline characteristics in the Physicians’ Health Study (United States). Cancer Causes Control 11:617–626

    PubMed  CAS  Google Scholar 

  • Cortesi M, Fridman E, Volkov A et al (1999) Crowell PL: prevention and therapy of cancer by dietary monoterpenes. J Nutr 129: S775–S778

    Google Scholar 

  • Cortesi M, Fridman E, Volkov A et al (2008) Clinical assessment of the cancer diagnostic value of prostatic zinc: a comprehensive needle-biopsy study. Prostate 68:994–1006

    PubMed  CAS  Google Scholar 

  • Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775S–778S

    PubMed  CAS  Google Scholar 

  • Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15

    PubMed  CAS  Google Scholar 

  • Davis JN, Singh B, Bhuiyan M et al (1998) Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 32:123–131

    PubMed  CAS  Google Scholar 

  • Day JK, Bauer AM, DesBordes C et al (2002) Genistein alters methylation patterns in mice. J Nutr 132: S2419–S2423

    Google Scholar 

  • de la Taille A (2001) PC SPES in prostatic cancer: critical reviewof the literature. Prog Urol 11:428–432

    PubMed  Google Scholar 

  • deVere White RW, Hackman RM et al (2004) Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer. Urology 63:259–263

    PubMed  Google Scholar 

  • deVere White RW, Tsodikov A, Stapp EC et al (2010) Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer 62:1036–1043

    PubMed  CAS  Google Scholar 

  • Dhanalakshmi S, Agarwal R, Agarwal C (2003) Inhibition of NF-kappaB pathway in grape seed extract-induced apoptotic death of human prostate carcinoma DU145 cells. Int J Oncol 23: 721–727

    PubMed  CAS  Google Scholar 

  • Donaldson MS (2004) Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr J 3:1–21

    Google Scholar 

  • Dorai T, Cao YC, Dorai B et al (2001) Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47:293–303

    PubMed  CAS  Google Scholar 

  • Druesne-Pecollo N, Latino-Martel P, Norat T et al (2010) Beta-carotene supplementation and cancer risk: a systematic review and meta-analysis of randomized controlled trials. Int J Cancer 127:172–184

    PubMed  CAS  Google Scholar 

  • Dunn BK, Richmond ES, Minasian LM et al (2010) A nutrient approach to prostate cancer prevention: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Nutr Cancer 62:896–918

    PubMed  CAS  Google Scholar 

  • Eichholzer M, Stahelin HB, Gey KF et al (1996) Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year follow-up of the prospective Basel study. Int J Cancer 66:145–150

    PubMed  CAS  Google Scholar 

  • Eichholzer M, Stahelin HB, Ludin E et al (1999) Smoking, plasma vitamins C, E, retinol, and carotene, and fatal prostate cancer: seventeen-year follow-up of the prospective Basal study. Prostate 38:189–198

    PubMed  CAS  Google Scholar 

  • Etminan M, Takkouche B, Caamano-Isorna F (2004) The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 13:340–345

    PubMed  CAS  Google Scholar 

  • Fang MZ, Wang Y, Ai N et al (2003) Tea polyphenol (–)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    PubMed  CAS  Google Scholar 

  • Fares F, Azzam N, Appel B et al (2010) The potential efficacy of 3,3'-diindolylmethane in prevention of prostate cancer development. Eur J Cancer Prev 19:199–203

    PubMed  CAS  Google Scholar 

  • Favus MJ, Langman CB (1986) Evidence for calcium-dependent control of 1,25-dihydroxyvitamin D3 production by rat kidney proximal tubules. J Biol Chem 261:11224–11229

    PubMed  CAS  Google Scholar 

  • Fazzio A, Marilley D, Azzi A (1997) The effect of alpha-tocopherol and beta-tocopherol on proliferation, protein kinase C activity and gene expression in different cell lines. Biochem Mol Biol Int 41:93–101

    PubMed  CAS  Google Scholar 

  • Ferguson LR, Philpott M, Karunasinghe N (2004) Dietary cancer and prevention using antimutagens. Toxicology 198:147–159

    PubMed  CAS  Google Scholar 

  • Fischer L, Mahoney C, Jeffcoat AR et al (2004) Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer 48:160–170

    PubMed  CAS  Google Scholar 

  • Flaig TW, Glodé M, Gustafson D et al (2010) A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate 70:848–855

    PubMed  CAS  Google Scholar 

  • Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133:3275–3284

    Google Scholar 

  • Gandini S, Boniol M, Haukka J et al (2005) Anti carcinogenic and anti-metastatic properties of indole-3-carbinol in prostate cancer. Oncol Rep 13:89–93

    Google Scholar 

  • Gandini S, Boniol M, Haukka J et al (2011) Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer 128:1414–1424

    PubMed  CAS  Google Scholar 

  • Gann PH (2002) Risk factors for prostate cancer. Rev Urol 4 Suppl 5:S3–S10

    PubMed  Google Scholar 

  • Garikapaty VP, Ashok BT, Chen YG (2005) Anti-carcinogenic and anti-metastatic properties of indole-3-carbinol in prostate cancer. Oncol Rep 13:89–93

    PubMed  CAS  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. JNCI 91:317–331

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Ascherio A, Rimm EB et al (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. JNCI 87:1767–1776

    PubMed  CAS  Google Scholar 

  • Gong A, He M, Krishna Vanaja D et al (2009) Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells. Mol Nutr Food Res 53:878–886

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Peters U, Lampe JW et al (2007) Boron intake and prostate cancer risk. Cancer Causes Contr 18:1131–1140

    Google Scholar 

  • Goodman GE, Schaffer S, Omenn GS et al (2003) The association between lung and prostate cancer risk, and serum micronutrients: results and lessons learned from beta-carotene and retinol efficacy trial. Cancer Epidemiol Biomarkers Prev 12:518–526

    PubMed  CAS  Google Scholar 

  • Gopalakrishna R, Gundimeda U (2002) Antioxidant regulation of protein kinase C in cancer prevention. J Nutr 132: S3819–S3823

    Google Scholar 

  • Grayson DH (1994) Monoterpenoids. Nat Prod Rep 11:225–247

    PubMed  CAS  Google Scholar 

  • Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37:948–965

    PubMed  CAS  Google Scholar 

  • Gunawardena K, Murray DK, Meikle AW (2000) Vitamin E and other antioxidants inhibit human prostate cancer cells through apoptosis. Prostate 44:287–295

    PubMed  CAS  Google Scholar 

  • Gunawardena K, Campbell LD, Meikle AW (2004) Combination therapy with vitamins C plus E inhibits survivin and human prostate cancer cell growth. Prostate 59:319–327

    PubMed  CAS  Google Scholar 

  • Gupta S, Ahmad N, Mukhtar H (1999) Prostate cancer chemoprevention by green tea. Semin Urol Oncol 17:70–76

    PubMed  CAS  Google Scholar 

  • Gupta S, Afaq F, Mukhtar H (2001a) Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun 287:914–920

    PubMed  CAS  Google Scholar 

  • Gupta S, Hastak K, Ahmad N et al (2001b) Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA 98:10350–10355

    PubMed  CAS  Google Scholar 

  • Gupta S, Afaq F, Mukhtar H (2002a) Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21:3727–3738

    PubMed  CAS  Google Scholar 

  • Gupta S, Saha B, Giri AK (2002b) Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a review. Mutat Res 512:37–65

    PubMed  CAS  Google Scholar 

  • Gupta S, Hastak K, Afaq F et al (2004) Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23: 2507–2522

    PubMed  CAS  Google Scholar 

  • Habib FK, Ross M, Ho CK et al (2005) Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int J Cancer 114:190–194

    PubMed  CAS  Google Scholar 

  • Hartman TJ, Albanes D, Pietinen P et al (1998) The association between baseline vitamin E, selenium, and prostate cancer in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomarkers Prev 7:335–340

    PubMed  CAS  Google Scholar 

  • Heinonen OP, Albanes D, Virtamo J et al (1998) Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: incidence and mortality in a controlled trial. JNCI 90:440–446

    PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Singh SV (2004) Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review. Mutat Res 555:121–131

    PubMed  CAS  Google Scholar 

  • Hong HY, Kim BC (2007) Mixed lineage kinase 3 connects reactive oxygen species to c-Jun NH2-terminal kinase-induced mitochondrial apoptosis in genipin-treated PC3 human prostate cancer cells. Biochem Biophys Res Commun 362:307–312

    PubMed  CAS  Google Scholar 

  • Hong MY, Seeram NP, Heber D (2008) Pomegranate polyphenols down-regulate expression of androgen-synthesizing genes in human prostate cancer cells overexpressing the androgen receptor. J Nutr Biochem 19:848–855

    PubMed  CAS  Google Scholar 

  • Howard EW, Ling MT, Chua CW et al (2007) Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer. Clin Cancer Res 13: 1847–1856

    PubMed  CAS  Google Scholar 

  • Howells LM, Gallacher-Horley B, Houghton CE (2002) Indole-3-carbinol inhibits protein kinase B/Akt and induces apoptosis in the human breast tumor cell line MDA MB468 but not in the nontumorigenic HBL100 line. Mol Cancer Ther 1:1161–1172

    PubMed  CAS  Google Scholar 

  • Hsieh TC, Wu JM (1999) Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res 249:109–115

    PubMed  CAS  Google Scholar 

  • Hsieh TC, Wu JM (2000) Grape-derived chemopreventive agent resveratrol decreases prostate-specific antigen (PSA) expression in LNCaP cells by an androgen receptor (AR)-independent mechanism. Anticancer Res 20:225–228

    PubMed  CAS  Google Scholar 

  • Hu ML, Shih MK (1997) Ascorbic acid inhibits lipid peroxidation but enhances DNA damage in rat liver nuclei incubated with iron ions. Free Radic Res 26:585–592

    PubMed  CAS  Google Scholar 

  • Hwang ES, Bowen PE (2002) Can the consumption of tomatoes or lycopene reduce cancer risk? Integr Cancer Ther 1:121–132

    PubMed  CAS  Google Scholar 

  • Ide H, Tokiwa S, Sakamaki K et al (1994) N-(4-Hydroxyphenyl) retinamide induces cell cycle specific growth inhibition in PC3 cells. Prostate 24:299–305

    Google Scholar 

  • Igawa M, Tanabe T, Chodak GW (1994) N-(4-hydroxyphenyl) retinamide induces cell cycle specific growth inhibition in PC3 cells. Prostate 24:299–305

    PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    PubMed  CAS  Google Scholar 

  • Jatoi A, Ellison N, Burch PA et al (2003) A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer 97:1442–1446

    PubMed  CAS  Google Scholar 

  • Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Jian L, Xie LP, Lee AH et al (2004) Protective effect of green tea against prostate cancer: a case-control study in southeast China. Int J Cancer 108:130–135

    PubMed  CAS  Google Scholar 

  • Jian L, Du CJ, Lee AH et al (2005) Do dietary lycopene and other carotenoids protect against prostate cancer? Int J Cancer 113:1010–1014

    PubMed  Google Scholar 

  • Jiang C, Ganther H, Lu J (2000) Monomethyl selenium-specific inhibition of MMP-2 and VEGF expression: implications for angiogenic switch regulation. Mol Carcinog 29:236–250

    PubMed  CAS  Google Scholar 

  • John EM, Dreon DM, Koo J et al (2004) Residential sunlight exposure is associated with a decreased risk of prostate cancer. J Steroid Biochem Mol Biol 89–90:549–552

    PubMed  Google Scholar 

  • Karlson J, Borg-Karlson AK, Unelius R et al (1996) Inhibition of tumor cell growth by monoterpenes in vitro: evidence of a Ras-independent mechanism of action. Anticancer Drugs 7:422–429

    PubMed  CAS  Google Scholar 

  • Khan N, Afaq F, Mukhtar H (2007) Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 28:233–239

    PubMed  CAS  Google Scholar 

  • Khan N, Adhami VM, Mukhtar H (2010) Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer 17:R39–R52

    PubMed  CAS  Google Scholar 

  • Kim SH, Nam JH, Park EJ et al (2009) Menthol regulates TRPM8-independent processes in PC-3 prostate cancer cells. Biochim Biophys Acta 1792:33–38

    PubMed  CAS  Google Scholar 

  • Klein RD, Fischer SM (2002) Black tea polyphenols inhibit IGF-I-induced signaling through Akt in normal prostate epithelial cells and DU145 prostate carcinoma cells. Carcinogenesis 23: 217–221

    PubMed  CAS  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS et al (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    PubMed  CAS  Google Scholar 

  • Kong AN, Yu R, Hebbar V et al (2001) Signal transduction events elicited by cancer prevention compounds. Mutat Res 480–481:231–241

    PubMed  Google Scholar 

  • Konijeti R, Henning S, Moro A et al (2010) Chemoprevention of prostate cancer with lycopene in the TRAMP model. Prostate 70:1547–1554

    PubMed  CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

    PubMed  CAS  Google Scholar 

  • Krishnan K, Campbell S, Abdel-Rahman F et al (2003) Cancer chemoprevention drug targets. Curr Drug Targets 4:45–54

    PubMed  CAS  Google Scholar 

  • Kucuk O, Sarkar FH, SakrW et al (2001) Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev 10:861–868

    PubMed  CAS  Google Scholar 

  • Kucuk O, Sarkar FH, Djuric Z et al (2002) Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med 227:881–885

    CAS  Google Scholar 

  • Kumar AP, Garcia GE, Ghosh R et al (2003) 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia 5:255–266

    PubMed  CAS  Google Scholar 

  • Ledesma MC, Jung-Hynes B, Schmit TL et al (2011) Selenium and vitamin E for prostate cancer: post-SELECT (Selenium and Vitamin E Cancer Prevention Trial) status. Mol Med 17:134–143

    PubMed  CAS  Google Scholar 

  • Lee SC, Kuan CY, Yang CC et al (1998) Bioflavonoids commonly and potently induce tyrosine ephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells. Anticancer Res 18:1117–1121

    PubMed  CAS  Google Scholar 

  • Li Y, Sarkar FH (2002a) Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8:2369–2377

    PubMed  CAS  Google Scholar 

  • Li Y, Sarkar FH (2002b) Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett 186:157–164

    PubMed  CAS  Google Scholar 

  • Li Y, Li X, Sarkar FH (2003) Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J Nutr 133:1011–1019

    PubMed  CAS  Google Scholar 

  • Li Y, Che M, Bhagat S et al (2004) Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia 6:354–363

    PubMed  CAS  Google Scholar 

  • Li M, Zhang Z, Hill DL, Wang H et al (2007) Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 67:1988–1996

    PubMed  CAS  Google Scholar 

  • Liang JY, Fontana JA, Rao JN et al (1999a) Synthetic retinoid CD437 induces S-phase arrest and apoptosis in human prostate cancer cells LNCaP and PC-3. Prostate 38:228–236

    PubMed  CAS  Google Scholar 

  • Liang JY, Liu YY, Zou J et al (1999b) Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 40:200–207

    PubMed  CAS  Google Scholar 

  • Lippman SM, Goodman PJ, Klein EA et al (2005) Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JNCI 97, 94–102

    PubMed  CAS  Google Scholar 

  • Liu G, Oettel K, Bailey H et al (2003) Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Invest NewDrugs 21:367–372

    CAS  Google Scholar 

  • Lopez-Velez M, Martinez-Martinez F, Del Valle-Ribes C (2003) The study of phenolic compounds as natural antioxidants in wine. Crit RevFood Sci Nutr 43:233–244

    CAS  Google Scholar 

  • Lu X, Guo J, Hsieh TC et al (2003) Inhibition of proliferation and expression of AR/PSA by herbal supplement Equiguard in LNCaP cells cultured in androgen-proficient FBS and androgen-deficient charcoal-stripped FBS is correlated with increased serine-15 phosphorylation of the tumor suppressor gene p53. Anticancer Res 23:2489–2498

    PubMed  Google Scholar 

  • Maddi VS, Aragade PD, Digge VG et al (2007) Importance of nutraceuticals in health management. Pharmacog Rev 1:377–379

    Google Scholar 

  • Makela S, Poutanen M, Kostian ML et al (1998) Inhibition of 17beta-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells. Proc Soc Exp Biol Med 217:310–316

    PubMed  CAS  Google Scholar 

  • McCall MR, Frei B (1999) Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic Biol Med 26:1034–1053

    PubMed  CAS  Google Scholar 

  • McLarty J, Bigelow RL, Smith M et al (2009) Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila) 2:673–682

    CAS  Google Scholar 

  • Menon M, Maramag C, Malhotra RK et al (1998) Effect of vitamin C on androgen independent prostate cancer cells (PC3 and Mat-Ly-Lu) in vitro: involvement of reactive oxygen species-effect on cell number, viability and DNA synthesis. Cancer Biochem Biophys 16:17–30

    PubMed  CAS  Google Scholar 

  • Mentor-Marcel R, Lamartiniere CA, Eltoum IA et al (2005) Dietary genistein improves survival and reduces expression of osteopontin in the prostate of transgenic mice with prostatic adenocarcinoma (TRAMP). J Nutr 135:989–995

    PubMed  CAS  Google Scholar 

  • Metzger BT, Barnes DM, Reed JD (2009) A comparison of pectin, polyphenols, and phytosterols, alone or in combination, to lovastatin for reduction of serum lipids in familial hypercholesterolemic swine. J Med Food 12:854–860

    PubMed  CAS  Google Scholar 

  • Meyer JP, Gillatt DA (2002) PC-SPES: A herbal therapy for the treatment of hormone refractory prostate cancer. Prostate Cancer Prostatic Dis 5:13–15

    PubMed  Google Scholar 

  • Moyad MA (1999) Soy, disease prevention, and prostate cancer. Semin UrolOncol 17:97–102

    CAS  Google Scholar 

  • Müezzinoğlu T, Korkmaz M, Neşe N et al (2002) Curcumin induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21:8852–8861

    Google Scholar 

  • Mukhopadhyay A, Banerjee S, Stafford LJ (2002) Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene 21:8852–8861

    PubMed  CAS  Google Scholar 

  • Nachshon-Kedmi M, Yannai S, Haj A et al (2003) Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752

    PubMed  CAS  Google Scholar 

  • Nachshon-Kedmi M, Fares FA, Yannai S (2004) Therapeutic activity of 3,3′-diindolylmethane on prostate cancer in an in vivo model. Prostate 61:153–160

    PubMed  CAS  Google Scholar 

  • Nakamura K, Yasunaga Y, Segawa T, Ko D et al (2002) Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21:825–830

    PubMed  CAS  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276:13322–13330

    PubMed  CAS  Google Scholar 

  • Napora JK, Short RG, Muller DC et al (2011) High-dose isoflavones do not improve metabolic and inflammatory parameters in androgen-deprived men with prostate cancer. J Androl 32:40–48

    PubMed  CAS  Google Scholar 

  • Narayanan BA, Narayanan NK, Stoner GD (2002) Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci 70:1821–1839

    PubMed  CAS  Google Scholar 

  • Narayanan BA, Narayanan NK, Re GG et al (2003) Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer 104:204–212

    PubMed  CAS  Google Scholar 

  • Neuhouser ML, Barnett MJ, Kristal AR (2009) Dietary supplement use and prostate cancer risk in the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev 18:2202–2206

    PubMed  CAS  Google Scholar 

  • Obermuller-Jevic UC, Olano-Martin E, Corbacho AM (2003) Lycopene inhibits the growth of normal human prostate epithelial cells in vitro. J Nutr 133:3356–3360

    PubMed  Google Scholar 

  • Oh WK, Kantoff PW, WeinbergV, Jones G, Rini BI et al (2004) Prospective, multicenter, randomized phase II trial of the herbal supplement, PC-SPES, and diethylstilbestrol in patients with androgen-independent prostate cancer. J Clin Oncol 22:3705–3712

    PubMed  CAS  Google Scholar 

  • Ohno Y, Yoshida O, Oishi K et al (1988) Dietary beta-carotene and cancer of the prostate: a case-control study in Kyoto, Japan. Cancer Res 48:1331–1336

    PubMed  CAS  Google Scholar 

  • Olea-Herrero N, Vara D, Malagarie-Cazenave S et al (2009) The cannabinoid R+ methanandamide induces IL-6 secretion by prostate cancer PC3 cells. J Immunotoxicol 6:249–256

    PubMed  CAS  Google Scholar 

  • O’Prey J, Brown J, Fleming J (2003) Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol 66:2075–2088

    PubMed  Google Scholar 

  • Pannellini T, Iezzi M, Liberatore M, Sabatini F et al (2010) A dietary tomato supplement prevents prostate cancer in TRAMP mice. Cancer Prev Res (Phila) 3:1284–1291

    CAS  Google Scholar 

  • Pantuck AJ, Leppert JT, Zomorodian N et al (2006) Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer. Clin Cancer Res 12:4018–4026

    PubMed  CAS  Google Scholar 

  • Parodi PW (2005). Dairy product consumption and the risk of breast cancer. J Am Coll Nutr (6 Suppl):556S–568S

    Google Scholar 

  • Pinto JT, Qiao C, Xing J et al (2000) Alterations of prostate biomarker expression and testosterone utilization in human LNCaP prostatic carcinoma cells by garlic-derived S-allylmercaptocysteine. Prostate 45:304–314

    PubMed  CAS  Google Scholar 

  • Platz EA, Leitzmann MF, Hollis BW et al (2004) Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent risk of prostate cancer. Cancer Causes Contr 15:255–265

    Google Scholar 

  • Polek TC, Stewart LV, Ryu EJ et al (2003) p53 is required for 1,25-dihydroxyvitamin D3-induced G0 arrest but is not required for G1 accumulation or apoptosis of LNCaP prostate cancer cells. Endocrinology 144:50–60

    PubMed  CAS  Google Scholar 

  • Powell SR (2011) The antioxidant properties of zinc. J Nutr 130:S1447–S1454; 2000. Prevalence of prostate cancer in high boron-exposed population: a community-based study. Biol Trace Elem Res Mar 23. [Epub ahead of print]

    Google Scholar 

  • Rabi T, Shukla S, Gupta S (2008) Betulinic acid suppresses constitutive and TNFalpha-induced NF-kappaB activation and induces apoptosis in human prostate carcinoma PC-3 cells. Mol Carcinog 47:964–973

    PubMed  CAS  Google Scholar 

  • Rahman KM, Banerjee S, Ali S et al (2009) 3,3'-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin down-regulation. Cancer Res 69:4468–4475

    PubMed  CAS  Google Scholar 

  • Rajasekaran A, Sivagnanam G, Xavier R (2008) Nutraceuticals as therapeutic agents: a review. Res J Pharm Tech 1:328–340

    CAS  Google Scholar 

  • Rajesh D, Howard SP (2003) Perillyl alcohol mediated radiosensitization via augmentation of the Fas pathway in prostate cancer cells. Prostate 57:14–23

    PubMed  CAS  Google Scholar 

  • Rao A, Woodruff RD, Wade WN et al (2002) Genistein and vitamin D synergistically inhibit human prostatic epithelial cell growth. J Nutr 132:3191–3194

    PubMed  CAS  Google Scholar 

  • Rettig MB, Heber D, An J et al (2008) Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-kappaB-dependent mechanism. Mol Cancer Ther 7:2662–2671

    PubMed  CAS  Google Scholar 

  • Richter F, Joyce A, Fromowitz F et al (2002) Immunohistochemical localization of the retinoic acid receptors in human prostate. J Androl 23:830–838

    PubMed  CAS  Google Scholar 

  • Robak J, Gryglewski RJ (1996) Bioactivity of flavonoids. Pol JPharmacol 48:555–564

    CAS  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    PubMed  CAS  Google Scholar 

  • Rock CL (2007) Multivitamin-multimineral supplements: who uses them? Am J Clin Nutr 85:277S–279S

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Jacobs EJ, Mondul AM et al (2004) Vitamin E supplements and risk of prostate cancer in U.S. men. Cancer Epidemiol Biomarkers Prev 13:378–382

    PubMed  CAS  Google Scholar 

  • Ross SA (2010) Evidence for the relationship between diet and cancer. Exp Oncol 32:137–142

    PubMed  CAS  Google Scholar 

  • Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    PubMed  CAS  Google Scholar 

  • Sah NK, Munshi A, Kurland JF et al (2003) Translation inhibitors sensitize prostate cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by activating c-Jun N-terminal kinase. J Biol Chem 278:20593–20602

    PubMed  CAS  Google Scholar 

  • Saleem M, Adhami VM, Siddiqui IA (2003) Tea beverage in chemoprevention of prostate cancer: a mini-review. Nutr Cancer 47:13–23

    PubMed  CAS  Google Scholar 

  • Saleem M, Adhami VM, Ahmad N et al (2005) Prognostic significance of metastasis-associated protein S100A4 (Mts1) in prostate cancer progression and chemoprevention regimens in an autochthonous mouse model. Clin Cancer Res 11:147–153

    PubMed  CAS  Google Scholar 

  • Santibanez JF, Navarro A, Martinez J (1997) Genistein inhibits proliferation and in vitro invasive potential of human prostatic cancer cell lines. Anticancer Res 17:1199–1204

    PubMed  CAS  Google Scholar 

  • Sarkar FH, Li Y (2004) Cell signaling pathways altered by natural chemopreventive agents. Mutat Res 555:53–64

    PubMed  CAS  Google Scholar 

  • Schmid HP, Fischer C, Engeler DS et al (2011) Nutritional aspects of primary prostate cancer prevention. Recent Results Cancer Res 188:101–107

    PubMed  Google Scholar 

  • Schuurman AG, Goldbohm RA, Brants HA et al (2002) A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). Cancer Causes Contr 13:573–582

    Google Scholar 

  • Schwartz GG, Whitlatch LW, Chen TC et al (1998) Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Cancer Epidemiol Biomarkers Prev 7:391–395

    PubMed  CAS  Google Scholar 

  • Shi J, Yu J, Pohorly JE et al (2003) Polyphenolics in grape seeds—biochemistry and functionality. J Med Food 4:291–299

    Google Scholar 

  • Shih A, Zhang S, Cao HJ et al (2004) Inhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in prostate cancer cells is mediated by protein kinase C-alpha. Mol Cancer Ther 3:1355–1364

    PubMed  CAS  Google Scholar 

  • Shukla S, Gupta S (2004a) Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog 39:114–126

    PubMed  CAS  Google Scholar 

  • Shukla S, Gupta S (2004b) Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res 10:3169–3178

    PubMed  CAS  Google Scholar 

  • Shukla S, Mishra A, Fu P et al (2005) Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J 19:2042–2044

    PubMed  CAS  Google Scholar 

  • Shukla S, MacLennan GT, Flask CA et al (2007) Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res 67: 6925–6935

    PubMed  CAS  Google Scholar 

  • Siddiqui IA, Adhami VM, Afaq F et al (2004) Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem 91:232–242

    PubMed  CAS  Google Scholar 

  • Sigounas G, Hooker J, Anagnostou A (1997) S-Allylmercaptocysteine inhibits cell proliferation and reduces the vi-ability of erythroleukemia, breast, and prostate cancer cell lines. Nutr Cancer 27:186–191

    PubMed  CAS  Google Scholar 

  • Siler U, Barella L, Spitzer V et al (2004) Lycopene and vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model. FASEB J 18:1019–1021

    PubMed  CAS  Google Scholar 

  • Singh RP, Agarwal R (2002) Flavonoid antioxidant silymarin and skin cancer. Antioxid Redox Signal 4:655–663

    PubMed  CAS  Google Scholar 

  • Singh RP, Agarwal R (2004) Prostate cancer prevention by silibinin. Curr Cancer Drug Targets 4:1–11

    PubMed  CAS  Google Scholar 

  • Singh RP, Sharma G, Dhanalakshmi S et al (2003) Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomarkers Prev 12:933–939

    PubMed  CAS  Google Scholar 

  • Singh RP, Tyagi AK, Dhanalakshmi S et al (2004a) Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3. Int J Cancer 108:733–740

    PubMed  CAS  Google Scholar 

  • Singh AV, Xiao D, Lew KL et al (2004b) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25:83–90

    PubMed  CAS  Google Scholar 

  • Singh SV, Herman-Antosiewicz A, Singh AV et al (2004c) Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem 279:25813–25822

    PubMed  CAS  Google Scholar 

  • Sinha R, El-Bayoumy K (2004) Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr Cancer Drug Targets 4:13–28

    PubMed  CAS  Google Scholar 

  • Soobrattee MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35

    PubMed  CAS  Google Scholar 

  • Soriano-Garcia M (2004) Organoselenium compounds as potential therapeutic and chemopreventive agents: a review. Curr Med Chem 11:1657–1669

    PubMed  CAS  Google Scholar 

  • Stan SD, Singh SV (2009) Transcriptional repression and inhibition of nuclear translocation of androgen receptor by diallyl trisulfide in human prostate cancer cells. Clin Cancer Res 15:4895–4903

    PubMed  CAS  Google Scholar 

  • Stewart LV, Weigel NL (2004) Vitamin D and prostate cancer. Exp Biol Med 229:277–284

    CAS  Google Scholar 

  • Stratton J, Godwin M (2011) The effect of supplemental vitamins and minerals on the development of prostate cancer: a systematic review and meta-analysis. Fam Pract 28:243–252

    PubMed  Google Scholar 

  • Taper HS, Jamison JM, Gilloteaux J et al (2001) In vivo reactivation of DNases in implanted human prostate tumors after administration of a vitamin C/K(3) combination. J Histochem Cytochem 49:109–120

    PubMed  CAS  Google Scholar 

  • Tavani A, Bertuccio P, Bosetti C et al (2005) Dietary intake of calcium, vitamin d, phosphorus and the risk of prostate cancer. Eur Urol 48:27–33

    PubMed  CAS  Google Scholar 

  • Teiten MH, Gaascht F, Cronauer M et al (2011) Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int J Oncol 38:603–611

    PubMed  CAS  Google Scholar 

  • Thelen P, WuttkeW, Jarry H (2004) Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. J Urol 171:1934–1938

    PubMed  CAS  Google Scholar 

  • Traka M, Gasper AV, Melchini A et al (2008). Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One 3:e2568.

    PubMed  Google Scholar 

  • Tyagi AK, Singh RP, Agarwal C et al (2002) Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin Cancer Res 8:3512–3519

    PubMed  CAS  Google Scholar 

  • Venkateswaran V, Fleshner NE, Klotz LH (2004) Synergistic effect of vitamin E and selenium in human prostate cancer cell lines. ProstateCancer Prostatic Dis 7:54–56

    CAS  Google Scholar 

  • Vidlar A, Vostalova J, Ulrichova J et al (1997) Diet and prostate cancer: a case-control study. Eur J Cancer 33:101–107

    Google Scholar 

  • Vidlar A, Vostalova J, Ulrichova J et al (2010) The safety and efficacy of a silymarin and selenium combination in men after radical prostatectomy – a six month placebo-controlled double-blind clinical trial. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:239–244

    PubMed  CAS  Google Scholar 

  • Vlajinac HD, Marinković JM, Ilić MD (1997) Diet and prostate cancer: a case-control study. Eur J Cancer 33:101–107

    PubMed  CAS  Google Scholar 

  • Wang X, Quinn PJ (1999) Vitamin E and its function in membranes. Prog Lipid Res 38:309–336

    PubMed  CAS  Google Scholar 

  • Wang L, Liu D, Ahmed T et al (2004) Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int J Oncol 24:187–192

    PubMed  Google Scholar 

  • Wang P, Aronson WJ, Huang M (2010) Green tea polyphenols and metabolites in prostatectomy tissue: implications for cancer prevention. Cancer Prev Res (Phila) 3:985–993

    CAS  Google Scholar 

  • Webber MM, Waghray A (1995) Urokinase-mediated extracellular matrix degradation by human prostatic carcinoma cells and its inhibition by retinoic acid. Clin Cancer Res 1:755–761

    PubMed  CAS  Google Scholar 

  • Weinstein SJ, Wright ME, Pietinen P et al (2005) Serum alpha-tocopherol and gamma-tocopherol in relation to prostate cancer risk in a prospective study. JNCI 97:396–399

    PubMed  CAS  Google Scholar 

  • Weisburger JH (1999) Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem Toxicol 37:943–948

    PubMed  CAS  Google Scholar 

  • Wilkinson S, Chodak GW (2003) Critical review of complementary therapies for prostate cancer. J Clin Oncol 21:2199–2210

    PubMed  CAS  Google Scholar 

  • Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    PubMed  CAS  Google Scholar 

  • Xiao D, Singh SV (2010) p66Shc is indispensable for phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Cancer Res 70:3150–3158

    PubMed  CAS  Google Scholar 

  • Xiao D, Zeng Y, Choi S et al (2005) Caspase-dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable-derived cancer chemopreventive agent, is mediated by Bak and Bax. Clin Cancer Res 11:2670–1679

    Google Scholar 

  • Xu C, Shen G, Chen C et al (2005) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495

    PubMed  CAS  Google Scholar 

  • Yin F, Giuliano AE, Law RE et al (2001) Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res 21:413–420

    PubMed  CAS  Google Scholar 

  • Yip I, Cudiamat M, Chim D (2003) PC-SPES for treatment of prostate cancer: herbal medicine. Curr Urol Rep 4:253–257

    PubMed  Google Scholar 

  • Yu S, Shen G, Khor TO et al (2008) Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther 7:2609–2620

    PubMed  CAS  Google Scholar 

  • Zambetti P (2008) Global market growth for dietary supplements. http://www.naturalproductsinsider.com/.../2008/.../global-market-growth-for-dietary-supplements.aspx

  • Zhang Y, Ni J, Messing EM et al (2002) Vitamin E succinate inhibits the function of androgen receptor and the expression of prostate-specific antigen in prostate cancer cells. Proc Natl Acad Sci USA 99:7408–7413

    PubMed  CAS  Google Scholar 

  • Zhang J, Hsu JC, Kinseth MA et al (2003) Indole-3-carbinol induces a G1 cell cycle arrest and inhibits prostate-specific antigen production in human LNCaP prostate carcinoma cells. Cancer 98:2511–2520

    PubMed  CAS  Google Scholar 

  • Zhang Y, Kong C, Zeng Y et al (2010) Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog 49:374–385

    PubMed  CAS  Google Scholar 

  • Zhao J, Wang J, Chen Y (1999) Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5–3′-gallate as the most effective antioxidant constituent. Carcinogenesis 20:1737–1745

    PubMed  CAS  Google Scholar 

  • Zhu W, Zhang JS, Young CY (2001) Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis 22:1399–1403

    PubMed  CAS  Google Scholar 

  • Zi X, Agarwal R (1999) Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci USA 96:7490–7495

    PubMed  CAS  Google Scholar 

  • Zwenger S, Basu C (2008) Plant terpenoids: applications and future potentials. Biotechnol Mol Biol Rev 3:001–007

    Google Scholar 

Download references

Acknowledgements

The original work from author’s laboratory outlined in this chapter was supported by United States Public Health Service Grants RO1 CA108512, RO1 CA115491 and RO1 AT002709 and funds from Cancer Research and Prevention Foundation to SG and RO3 CA1376676 to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shukla, S., Gupta, S. (2012). Current Status and Future Prospects of Nutraceuticals in Prostate Cancer. In: Sarkar, F. (eds) Nutraceuticals and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2630-7_5

Download citation

Publish with us

Policies and ethics