Skip to main content

Dietary Phytochemicals and Chemoprevention of Solar Ultraviolet Radiation-Induced Skin Cancer

  • Chapter
  • First Online:
Nutraceuticals and Cancer

Abstract

Preclinical, clinical and epidemiological studies suggest that exposure of skin to solar ultraviolet (UV) radiation induces harmful effects and leads to various skin diseases including melanoma and non-melanoma skin cancers. Solar UV radiation-induced skin cancers are caused by depletion in antioxidant defense system, inflammation, DNA damage, oxidation of lipids and proteins, disturbances in apoptotic machinery, deregulation of signaling pathways, mutation in critical target genes and immunosuppression. Therefore, for reducing the incidence of skin cancer the use of phytochemicals that possess the abilities to inhibit these events is gaining considerable attention as photoprotective agents. These phytochemicals are widely distributed in plant kingdom which includes fruits, vegetables, seeds, flowers and bark; and belong to several classes that include polyphenols, flavonoids, isoflavonoids, proanthocyanidins, phytoalexins, anthocyanidins and carotenoids. This chapter presents and discusses key findings from studies on the photoprotective effects of some selected phytochemicals, such as, green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, silymarin, resveratrol, genistein, honokiol, quercetin, delphinidin, curcumin, sulforaphone, lycopene and lutein/zeaxanthin on UV-induced skin inflammation, oxidative stress, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways for the management of skin cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCC:

basal cell carcinomas

CHS:

contact hypersensitivity

COX-2:

cyclooxygenase-2

CPD:

cyclobutane pyrimidine dimers

ECG:

(-)-epicatechin gallate

EGC:

(-)-epigallocatechin

EGCG:

(-)-epigallocatechin-3-gallate

GPx:

glutathione peroxidase

GSH:

reduced glutathione

GSPs:

grape seed proanthocyanidins

GTPs:

green tea polyphenols

H2O2 :

hydrogen peroxide

IL:

interleukin

MAPK:

mitogen-activated protein kinase

NER:

nucleotide excision repair

NFκB:

nuclear factor-kappaB

PCNA:

proliferating cell nuclear antigen

PFE:

pomegranate fruit extract

PG:

prostaglandin

PGE2 :

prostaglandin E2

ROS:

reactive oxygen species

SCC:

squamous cell carcinomas

TNFα:

tumor necrosis factor alpha

UV:

ultraviolet

XPA:

xeroderma pigmentosum complementation group A

References

  • Adhami VM et al (2003) Suppression of ultraviolet B exposure-mediated activation of NF-kappaB in normal human keratinocytes by resveratrol. Neoplasia 5:74–82

    PubMed  CAS  Google Scholar 

  • Adhami VM et al (2008) Phytochemicals for prevention of solar ultraviolet radiation-induced damages. Photochem Photobiol 84:489–500

    PubMed  CAS  Google Scholar 

  • Afaq F (2011) Natural agents: cellular and molecular mechanisms of photoprotection. Arch Biochem Biophys 508:144–151

    PubMed  CAS  Google Scholar 

  • Afaq F, Mukhtar H (2006) Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Exp Dermatol 15:678–684

    PubMed  CAS  Google Scholar 

  • Afaq F et al (2003a). Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol 186:28–37

    PubMed  CAS  Google Scholar 

  • Afaq F et al (2003b) Suppression of UVB-induced phosphorylation of mitogen-activated protein kinases and nuclear factor kappa B by green tea polyphenol in SKH-1 hairless mice. Oncogene 22:9254–9264

    PubMed  CAS  Google Scholar 

  • Afaq F et al (2005) Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutat Res 571:153–173

    PubMed  CAS  Google Scholar 

  • Afaq F et al (2007a) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol 127:222–232

    PubMed  CAS  Google Scholar 

  • Afaq F et al (2007b) Pomegranate fruit extract inhibits UVB-induced activation of NFκB and MAPK leading to decreased expression of matrix metalloprotenaises in SKH-1 mouse skin. Proc Amer Assoc Cancer Res 48:2571

    Google Scholar 

  • Afaq F et al (2008) Inhibitory effect of oral feeding of pomegranate fruit extract on UVB-induced skin carcinogenesis in SKH-1 hairless mice. Proc Am Assoc Cancer Res 49:1246

    Google Scholar 

  • Afaq F et al (2009) Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin. Exp Dermatol 18:553–561

    PubMed  CAS  Google Scholar 

  • Afaq F et al (2010) Oral feeding of pomegranate fruit extract inhibits early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Photochem Photobiol 86:1318–1326

    PubMed  CAS  Google Scholar 

  • Agarwal R et al (1993) Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea. Photochem Photobiol 58:695–700

    PubMed  CAS  Google Scholar 

  • An KP et al (2002) Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: Implications for therapeutic approaches. Photochem Photobiol 76:73–80

    PubMed  CAS  Google Scholar 

  • Arad S et al (2008) Topical thymidine dinucleotide treatment reduces development of ultraviolet-induced basal cell carcinoma in Ptch-1+/- mice. Am J Pathol 172:1248–1255

    PubMed  CAS  Google Scholar 

  • Astner S et al (2007) Dietary lutein/zeaxanthin partially reduces photoaging and photocarcinogenesis in chronically UVB-irradiated Skh-1 hairless mice. Skin Pharmacol Physiol 20:283–291

    PubMed  CAS  Google Scholar 

  • Aust O et al (2005) Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int J Vitam Nutr Res 75:54–60

    PubMed  CAS  Google Scholar 

  • Aziz MH et al (2005) Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease? FASEB J 19:1193–1195

    PubMed  CAS  Google Scholar 

  • Bachelor MA, Bowden GT (2004) UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol 14:131–138

    PubMed  CAS  Google Scholar 

  • Bowden GT (2004) Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4:23–35

    PubMed  CAS  Google Scholar 

  • Brand RM, Jendrzejewski JL (2008) Topical treatment with (-)-epigallocatechin-3-gallate and genistein after a single UV exposure can reduce skin damage. J Dermatol Sci 50:69–72

    PubMed  CAS  Google Scholar 

  • Buckman SY et al (1998) COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis 19:723–729

    PubMed  CAS  Google Scholar 

  • Casagrande R et al (2006) Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. J Photochem Photobiol B 84:21–27

    PubMed  CAS  Google Scholar 

  • Chapman RS et al (1995) Solar ultraviolet radiation and the risk of infectious disease. Photochem Photobiol 61:223–247

    PubMed  CAS  Google Scholar 

  • Cheng AL et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

  • Cho JW et al (2005) Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med 37:186–192

    PubMed  CAS  Google Scholar 

  • Clydesdale GJ et al (2001) Ultraviolet light induced injury: immunological and inflammatory effects. Immunol Cell Biol 79:547–568

    PubMed  CAS  Google Scholar 

  • Dhanalakshmi S et al (2004) Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. Carcinogenesis 25:1459–1465

    PubMed  CAS  Google Scholar 

  • Ding M et al (2010) Inhibition of AP-1 and MAPK signaling and activation of Nrf2/ARE pathway by quercitrin. Int J Oncol 36:59–67

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT et al (2006) Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts. Cancer Lett 240:243–252

    PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT et al (2007) Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomarkers Prev 16:847–851

    PubMed  CAS  Google Scholar 

  • Donawho CK, Kripke ML (1991) Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res 51:4176–4181

    PubMed  CAS  Google Scholar 

  • Dujic J et al (2007) Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light. J Invest Dermatol 127:1992–2000

    PubMed  CAS  Google Scholar 

  • Eichler O et al (2002) Divergent optimum levels of lycopene, beta-carotene and lutein protecting against UVB irradiation in human fibroblastst. Photochem Photobiol 75:503–506

    PubMed  CAS  Google Scholar 

  • Fazekas Z et al (2003) Protective effects of lycopene against ultraviolet B-induced photodamage. Nutr Cancer 47:181–187

    PubMed  CAS  Google Scholar 

  • Garcia-Alonso M et al (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem 20:521–529

    PubMed  CAS  Google Scholar 

  • Godar DE et al (2001) UV doses of Americans. Photochem Photobiol 73:621–629

    PubMed  CAS  Google Scholar 

  • Gonzaga ER (2009) Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection. Am J Clin Dermatol Suppl 1:19–24

    Google Scholar 

  • Gu M et al (2005) Dietary feeding of silibinin prevents early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Cancer Epidemiol. Biomarkers Prev 14:1344–1349

    CAS  Google Scholar 

  • Gu M et al (2007) Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Res 67:3483–3491

    PubMed  CAS  Google Scholar 

  • Halliday GM (2005) Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 571:107–120

    PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    PubMed  CAS  Google Scholar 

  • Hoppe PP et al (2003) Synthetic and tomato-based lycopene have identical bioavailability in humans. Eur J Nutr 42:272–278

    PubMed  CAS  Google Scholar 

  • Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    PubMed  Google Scholar 

  • Katiyar SK (2002) Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin. Int J Oncol 21:1213–1222

    PubMed  CAS  Google Scholar 

  • Katiyar SK (2007) UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett 255:1–11

    PubMed  CAS  Google Scholar 

  • Katiyar SK, Mukhtar H (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress. J Leukoc Biol 69:719–726

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (1995) Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols. Photochem Photobiol 62:855–861

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (1997a) Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst 89:556–566

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (1997b) Protection against induction of mouse skin papillomas with low and high risk of conversion to malignancy by green tea polyphenols. Carcinogenesis 18:497–502

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (1999a) Prevention of UVB-induced immunosuppression in mice by the green tea polyphenol (-)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production. Carcinogenesis 20:2117–2124

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (1999b) Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin. Photochem Photobiol 69:148–153

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (2000) Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clin Cancer Res 6:3864–3869

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (2001a) Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol Appl Pharmacol 176:110–117

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (2001b) Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22:287–294

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (2008) Silymarin, a flavonoid from milk thistle (Silybum marianum L.), inhibits UV-induced oxidative stress through targeting infiltrating CD11b+ cells in mouse skin. Photochem Photobiol 84:266–271

    PubMed  CAS  Google Scholar 

  • Katiyar SK et al (2010) Green tea polyphenols prevent UV-induced immunosuppression by rapid repair of DNA damage and enhancement of nucleotide excision repair genes. Cancer Prev Res 3:179–189

    CAS  Google Scholar 

  • Kim J et al (2001) Protective effects of (-)-epigallocatechin-3-gallate on UVA- and UVB-induced skin damage. Skin Pharmacol Appl Skin Physiol 14:11–19

    PubMed  CAS  Google Scholar 

  • Kim KH et al (2011) Resveratrol targets transforming growth factor-β2 signaling to block UV-induced tumor progression. J Invest Dermatol 131:195–202

    PubMed  CAS  Google Scholar 

  • Kinlen L et al (1979) Collaborative United Kingdom-Australia study of cancer in patients treated with immunosuppressive drugs. Br J Med II:1461–1466

    Google Scholar 

  • Kligman LH et al (1980) Sunscreens prevent ultraviolet photocarcinogenesis. J Am Acad Dermatol 3:30–35

    PubMed  CAS  Google Scholar 

  • Kripke ML (1990) Photoimmunology. Photochem Photobiol 52:919–924

    PubMed  CAS  Google Scholar 

  • Kripke ML et al (1992) Pyrimidine dimers in DNA initiated systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci USA 89:7516–7520

    PubMed  CAS  Google Scholar 

  • Kwon JY et al (2009) Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis 30:1932–1940

    PubMed  CAS  Google Scholar 

  • Langenbach R et al (1999) Cyclooxygenase-deficient mice. A summary of their characteristics and susceptibilities to inflammation and carcinogenesis. Ann N Y Acad Sci 889:52–61

    PubMed  CAS  Google Scholar 

  • la Porte C et al (2010) Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet 49:449–454

    PubMed  Google Scholar 

  • Lee EH et al (2004) Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression. J Invest Dermatol 122:510–517

    PubMed  CAS  Google Scholar 

  • Lin JY et al (2008) Topical isoflavones provide effective photoprotection to skin. Photodermatol Photoimmunol Photomed 24:61–66

    PubMed  Google Scholar 

  • Mallikarjuna G et al (2004) Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Res 64:6349–6356

    PubMed  CAS  Google Scholar 

  • Mantena SK, Katiyar SK (2006) Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes. Free Radic Biol Med 40:1603–1614

    PubMed  CAS  Google Scholar 

  • Mantena SK et al (2005) Orally administered green tea polyphenols prevent ultraviolet radiation-induced skin cancer in mice through activation of cytotoxic T cells and inhibition of angiogenesis in tumors. J Nutr 135:2871–2877

    PubMed  CAS  Google Scholar 

  • Meeran SM et al (2006a) Silymarin inhibits UV radiation-induced immunosuppression through augmentation of interleukin-12 in mice. Mol Cancer Ther 5:1660–1668

    PubMed  CAS  Google Scholar 

  • Meeran SM et al (2006b) (-)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer Res 66:5512–5520

    PubMed  CAS  Google Scholar 

  • Meeran SM et al (2009) Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J Invest Dermatol 129:1258–1270

    PubMed  CAS  Google Scholar 

  • Melnikova VO, Ananthaswamy HN (2005) Cellular and molecular events leading to the development of skin cancer. Mutat Res 571:91–106

    PubMed  CAS  Google Scholar 

  • Meunier L et al (1998) UV-induced immunosuppression and skin cancers. Rev Med Interne 19:247–254

    PubMed  CAS  Google Scholar 

  • Miller CC et al (1994) Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Evidence for UVB-induced epidermal growth factor receptor activation. J Biol Chem 269:3529–3533

    PubMed  CAS  Google Scholar 

  • Mittal A et al (2003) Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24:1379–1388

    PubMed  CAS  Google Scholar 

  • Moore JO et al (2006) Photoprotective effect of isoflavone genistein on ultraviolet B-induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis. Carcinogenesis 27:1627–1635

    PubMed  CAS  Google Scholar 

  • Morley N et al (2005) The green tea polyphenol (-)-epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation-induced damage. Photodermatol Photoimmunol Photomed 21:15–22

    PubMed  CAS  Google Scholar 

  • Mukhtar H, Elmets CA (1996) Photocarcinogenesis: Mechanisms, models and human health implications. Photochem Photobiol 63:355–447

    Google Scholar 

  • Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302:71–83

    PubMed  CAS  Google Scholar 

  • Olson ER et al(2010) Quercetin potentiates UVB-Induced c-Fos expression: implications for its use as a chemopreventive agent. Cancer Prev Res. (Phila) 3:876–884

    CAS  Google Scholar 

  • Palombo P et al (2007) Beneficial long-term effects of combined oral/topical antioxidant treatment with the carotenoids lutein and zeaxanthin on human skin: a double-blind, placebo-controlled study. Skin Pharmacol Physiol 20:199–210

    PubMed  CAS  Google Scholar 

  • Quan T et al (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14:20–24

    PubMed  CAS  Google Scholar 

  • Ribaya-Mercado JD et al (1995) Skin lycopene is destroyed preferentially over beta-carotene during ultraviolet irradiation in humans. J Nutr 125:1854–1859

    PubMed  CAS  Google Scholar 

  • Rundhaug JE, Fischer SM (2008) Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem Photobiol 84:322–329

    PubMed  CAS  Google Scholar 

  • Rundhaug JE et al (2007) A role for cyclooxygenase-2 in ultraviolet light-induced skin carcinogenesis. Mol Carcinog 46:692–698

    PubMed  CAS  Google Scholar 

  • Schwarz A et al (2008) Green tea phenol extracts reduce UVB-induced DNA damage in human cells via interleukin-12. Photochem Photobiol 84:350–355

    PubMed  CAS  Google Scholar 

  • Seeram NP et al (2006) Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. J Nutr 136:2481–2485

    PubMed  CAS  Google Scholar 

  • Setchell KD et al (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131:1362S-1375S

    PubMed  CAS  Google Scholar 

  • Sharma SD, Katiyar SK (2006) Dietary grape-seed proanthocyanidin inhibition of ultraviolet B-induced immune suppression is associated with induction of IL-12. Carcinogenesis 27:95–102

    PubMed  CAS  Google Scholar 

  • Sharma SD, Katiyar SK (2010) Dietary grape seed proanthocyanidins inhibit UVB-induced cyclooxygenase-2 expression and other inflammatory mediators in UVB-exposed skin and skin tumors of SKH-1 hairless mice. Pharm Res 27:1092–1102

    PubMed  CAS  Google Scholar 

  • Sharma SD et al (2007) Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-kappaB signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther 6:995–1005

    PubMed  CAS  Google Scholar 

  • Shibata A et al (2010) Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice. J Nutr Biochem 21:702–709

    PubMed  CAS  Google Scholar 

  • Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    PubMed  CAS  Google Scholar 

  • Stahl W et al (2001) Dietary tomato paste protects against ultraviolet light-induced erythema in humans. J Nutr 131:1449–1451

    PubMed  CAS  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    PubMed  CAS  Google Scholar 

  • Talalay P et al (2007) Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation. Proc Natl Acad Sci USA 104:17500–17505

    PubMed  CAS  Google Scholar 

  • Tsoyi K et al (2008) Anthocyanins from black soybean seed coats inhibit UVB-induced inflammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factor-kappaB and phosphatidylinositol 3-kinase/Akt pathway. J Agric Food Chem 56:8969–8974

    PubMed  CAS  Google Scholar 

  • Ullrich SE (1995) Potential for immunotoxicity due to environmental exposure to ultraviolet radiation. Hum Exp Toxicol 14:89–91

    PubMed  CAS  Google Scholar 

  • Vaid M et al (2010a) Honokiol, a phytochemical from the Magnolia plant, inhibits photocarcinogenesis by targeting UVB-induced inflammatory mediators and cell cycle regulators: development of topical formulation. Carcinogenesis 31:2004–2011

    PubMed  CAS  Google Scholar 

  • Vaid M et al (2010b) Proanthocyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A-dependent mechanism. Cancer Prev Res (Phila) 3:1621–1629

    CAS  Google Scholar 

  • Vayalil PK et al (2003) Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 24:927–936

    PubMed  CAS  Google Scholar 

  • Wang ZY et al (1991) Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols. Carcinogenesis 12:1527–1530

    PubMed  CAS  Google Scholar 

  • Wang ZY et al (1992a) Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-1 mice. Cancer Res 52:1162–1170

    PubMed  CAS  Google Scholar 

  • Wang ZY et al (1992b) Inhibitory effect of green tea on the growth of established skin papillomas in mice. Cancer Res 52:6657–6665

    PubMed  CAS  Google Scholar 

  • Wang ZY et al (1994) Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7, 12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res 54:3428–3435

    PubMed  CAS  Google Scholar 

  • Wang YN et al (2010) Genistein protects against UVB-induced senescence-like characteristics in human dermal fibroblast by p66Shc down-regulation. J Dermatol Sci 58:19–27

    PubMed  CAS  Google Scholar 

  • Wei H et al (1998) DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage. Biochemistry 37:6485–6490

    PubMed  CAS  Google Scholar 

  • Wei H Y et al (2002) Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Lett 185:21–29

    PubMed  CAS  Google Scholar 

  • Yarosh D et al (1992) Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res 52:4227–4231

    PubMed  CAS  Google Scholar 

  • Yoshikawa T et al (1990) Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J Invest Dermatol 95:530–536

    Google Scholar 

  • Zaid MA et al (2007) Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem Photobiol 83:882–888

    PubMed  Google Scholar 

  • Zhu M et al (2004) Phase II enzyme inducer, sulforaphane, inhibits UVB-induced AP-1 activation in human keratinocytes by a novel mechanism. Mol Carcinog 41:179–186

    PubMed  CAS  Google Scholar 

  • Ziegler A et al (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–776

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work highlighted from author’s laboratory was supported by funds from the National Institutes of Health [(R21 AT002429-02, F.A.) (CA104428, CA140832, AT002536, S.K.K.)] and Veterans Administration Merit Review Award (S.K.K.). The content of this article does not necessarily reflect the views or policies of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Afaq, F., Katiyar, S.K. (2012). Dietary Phytochemicals and Chemoprevention of Solar Ultraviolet Radiation-Induced Skin Cancer. In: Sarkar, F. (eds) Nutraceuticals and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2630-7_14

Download citation

Publish with us

Policies and ethics