Skip to main content

Slow but Steady Progress in Cancer Chemoprevention with Phenethyl Isothiocyanate: Fulfilled Promises and Translational Challenges

  • Chapter
  • First Online:
Nutraceuticals and Cancer

Abstract

Population-based observational studies continue to support the premise that intake of certain fruits and vegetables may lower the risk of cancer, and this association is quite persuasive for the cruciferous vegetables. Inverse association between cruciferous vegetable intake and the risk of cancer has been noted for different types of malignancies, including stomach, prostate, lung, breast, colon, and bladder cancers. Epidemiological observations in “FOLKS” have undoubtedly sparked interest among cancer biologists to conduct “FLASK”-based bench investigations to identify bioactive anticancer compounds from cruciferous vegetables as well as to determine their efficacy through “FUR”-based preclinical research in rodents. Cancer protective effect of cruciferous vegetables is partly attributed to organic isothiocyanates (ITC) with an –N = C = S functional group. Elucidation of the mechanism by which ITCs impart protection against cancer has been the topic of intense research in the past few decades. This article reviews bench-cage-bedside evidence supporting cancer chemopreventive potential of one such ITC compound, phenethyl isothiocyanate (PEITC). Future directions and challenges in clinical translation for PEITC are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4E-BP1:

eIF4E binding protein

AR:

androgen receptor

AUC:

area under the curve

BP:

benzo[a]pyrene

Cdk:

cyclin-dependent kinase

C max :

maximal achievable concentration

CYP:

cytochrome P450

eIF4E:

eukaryotic translation initiation factor 4E

ER:

estrogen receptor

ERK:

extracellular signal-regulated kinase

GST:

glutathione S-transferase

ITCs:

isothiocyanates

JNK:

c-Jun N-terminal kinase

MAPK:

mitogen-activated protein kinase

MMP:

matrix metalloproteinase

NAC:

N-acetylcysteine

NF-κB:

nuclear factor-κB

NNK:

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone

Nrf2:

NF-E2 related factor-2

PEITC:

phenethyl isothiocyanate

QR:

NAD(P)H:quinone oxidoreductase

ROS:

reactive oxygen species

T max :

time to reach C max

TRAMP:

transgenic adenocarcinoma of mouse prostate

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    PubMed  CAS  Google Scholar 

  • Akagi K, Sano M, Ogawa K et al (2003) Involvement of toxicity as an early event in urinary bladder carcinogenesis induced by phenethyl isothiocyanate, benzyl isothiocyanate, and analogues in F344 rats. Toxicol Pathol 31:388–396

    PubMed  CAS  Google Scholar 

  • Akiyama T, Dass CR, Choong PF (2009) Bim-targeted cancer therapy: a link between drug action and underlying molecular changes. Mol Cancer Ther 8:3173–3180

    PubMed  CAS  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    PubMed  CAS  Google Scholar 

  • Apel A, Zentgraf H, Buchler MW et al (2009) Autophagy-A double-edged sword in oncology. Int J Cancer 125:991–995

    PubMed  CAS  Google Scholar 

  • Barve A, Khor TO, Hao X et al (2008) Murine prostate cancer inhibition by dietary phytochemicals-curcumin and phenyethylisothiocyanate. Pharm Res 25:2181–2189

    PubMed  CAS  Google Scholar 

  • Beklemisheva AA, Feng J, Yeh YA et al (2007) Modulating testosterone stimulated prostate growth by phenethyl isothiocyanate via Sp1 and androgen receptor down-regulation. Prostate 67:863–870

    PubMed  CAS  Google Scholar 

  • Bommareddy A, Hahm ER, Xiao D et al (2009) Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res 69:3704–3712

    PubMed  CAS  Google Scholar 

  • Brown KK, Blaikie FH, Smith RA et al (2009) Direct modification of the proinflammatory cytokine macrophage migration inhibitory factor by dietary isothiocyanates. J Biol Chem 284:32425–32433

    PubMed  CAS  Google Scholar 

  • Carew JS, Nawrocki ST, Kahue CN et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    PubMed  CAS  Google Scholar 

  • Cavell BE, Alwi SSS, Donlevy A et al (2011) Anti-angiogenic effects of dietary isothiocyanates: mechanisms of action and implications for human health. Biochem Pharmacol 81:327–336

    PubMed  CAS  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) Bcl-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    PubMed  CAS  Google Scholar 

  • Chen YR, Wang W, Kong AN et al (1998) Molecular mechanisms of c-Jun N-terminal kinase-mediated apoptosis induced by anticarcinogenic isothiocyanates. J Biol Chem 273:1769–1775

    PubMed  CAS  Google Scholar 

  • Chen YR, Han J, Kori R et al (2002) Phenylethyl isothiocyanate induces apoptotic signaling via suppressing phosphatase activity against c-Jun N-terminal kinase. J Biol Chem 277:39334–39342

    PubMed  CAS  Google Scholar 

  • Cheung KL, Kong AN (2009) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J 12:87–97

    PubMed  Google Scholar 

  • Cheung KL, Khor TO, Yu S et al (2008) PEITC induces G1 cell cycle arrest on HT-29 cells through the activation of p38 MAPK signaling pathway. AAPS J 10:277–281

    PubMed  CAS  Google Scholar 

  • Cheung KL, Khor TO, Huang MT et al (2010) Differential in vivo mechanism of chemoprevention of tumor formation in azoxymethane/dextran sodium sulfate mice by PEITC and DBM. Carcinog 31:880–885

    CAS  Google Scholar 

  • Chiao JW, Wu H, Ramaswamy G et al (2004) Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinog 25:1403–1408

    CAS  Google Scholar 

  • Chung FL, Kelloff G, Steele V et al (1996) Chemopreventive efficacy of arylalkyl isothiocyanates and N-acetylcysteine for lung tumorigenesis in Fischer rats. Cancer Res 15(56):772–778

    Google Scholar 

  • Chung FL, Conaway CC, Rao CV et al (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinog 21:2287–2291

    CAS  Google Scholar 

  • Chyou PH, Nomura AM, Hankin JH et al (1990) A case-cohort study of diet and stomach cancer. Cancer Res 50:7501–7504

    PubMed  CAS  Google Scholar 

  • Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867

    PubMed  CAS  Google Scholar 

  • Conaway CC, Wang CX, Pittman B et al (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65:8548–8557

    PubMed  CAS  Google Scholar 

  • Cross JV, Foss FW, Rady JM et al (2007) The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase. BMC Cancer 7:183

    PubMed  Google Scholar 

  • Cross JV, Rady JM, Foss FW et al (2009) Nutrient isothiocyanates covalently modify and inhibit the inflammatory cytokine macrophage migration inhibitory factor (MIF). Biochem J 423:315–321

    PubMed  CAS  Google Scholar 

  • Cuddihy SL, Brown KK, Thomson SJ et al (2008) Induction of apoptosis by phenethyl isothiocyanate in cells overexpressing Bcl-XL. Cancer Lett 271:215–221

    PubMed  CAS  Google Scholar 

  • Di Pasqua AJ, Hong C, Wu MY et al (2010) Sensitization of non-small cell lung cancer cells to cisplatin by naturally occurring isothiocyanates. Chem Res Toxicol 23:1307–1309

    PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56:5–51

    CAS  Google Scholar 

  • Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1:34–45

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Rimm EB, Liu Y et al (2003) A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol Biomarkers Prev 12:1403–1409

    PubMed  CAS  Google Scholar 

  • Gong A, He M, Vanaja DK et al (2009) Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells. Mol Nutr Food Res 53:878–886

    PubMed  CAS  Google Scholar 

  • Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37:948–965

    PubMed  CAS  Google Scholar 

  • Gross-Steinmeyer K, Stapleton PL, Liu F et al (2004) Phytochemical-induced changes in gene expression of carcinogen-metabolizing enzymes in cultured human primary hepatocytes. Xenobiotica 34:619–632

    PubMed  CAS  Google Scholar 

  • Guengerich FP (2000) Metabolism of chemical carcinogens. Carcinog 21:345–351

    CAS  Google Scholar 

  • Guo Z, Smith TJ, Wang E et al (1992) Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats. Carcinog 13:2205–2210

    CAS  Google Scholar 

  • Hara M, Hanaoka T, Kobayashi M et al (2003) Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr Cancer 46:138–147

    PubMed  Google Scholar 

  • Hasegawa T, Nishino H, Iwashima A (1993) Isothiocyanates inhibit cell cycle progression of HeLa cells at G2/M phase. Anti-cancer drugs 4:273–279

    PubMed  CAS  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST*and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    PubMed  CAS  Google Scholar 

  • Hecht SS (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411

    PubMed  CAS  Google Scholar 

  • Hecht SS, Chung FL, Richie JP Jr et al (1995) Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol Biomarkers Prev 4:877–884

    PubMed  CAS  Google Scholar 

  • Hirose M, Yamaguchi T, Kimoto N et al (1998) Strong promoting activity of phenylethyl isothiocyanate and benzyl isothiocyanate on urinary bladder carcinogenesis in F344 male rats. Int J Cancer 77:773–777

    PubMed  CAS  Google Scholar 

  • Hofmann T, Kuhnert A, Schubert A et al (2009) Modulation of detoxification enzymes by watercress: in vitro and in vivo investigations in human peripheral blood cells. Eur J Nutr 48:483–491

    PubMed  CAS  Google Scholar 

  • Hu K, Morris ME (2004) Effects of benzyl-, phenethyl-, and alpha-naphthyl isothiocyanates on P-glycoprotein- and MRP1-mediated transport. J Pharm Sci 93:1901–1911

    PubMed  CAS  Google Scholar 

  • Hu R, Kim BR, Chen C et al (2003) The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells. Carcinog 24:1361–1367

    CAS  Google Scholar 

  • Hu R, Xu C, Shen G, Jain MR et al (2006) Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sci 79:1944–1955

    PubMed  CAS  Google Scholar 

  • Hu J, Straub J, Xiao D et al (2007) Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1. Cancer Res 67:3569–3573

    PubMed  CAS  Google Scholar 

  • Hu Y, Lu W, Chen G et al (2010) Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate. Blood 116:2732–2741

    PubMed  CAS  Google Scholar 

  • Huang C, Ma WY, Li J et al (1998) Essential role of p53 in phenethyl isothiocyanate-induced apoptosis. Cancer Res 58:4102–4106

    PubMed  CAS  Google Scholar 

  • Hwang ES, Lee HJ (2006) Phenylethyl isothiocyanate and its N-acetylcysteine conjugate suppress the metastasis of SK-Hep1 human hepatoma cells. J Nutr Biochem 17:837–846

    PubMed  CAS  Google Scholar 

  • Hwang ES, Lee HJ (2010) Effects of phenethyl isothiocyanate and its metabolite on cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Int J Food Sci Nutr 61:324–336

    PubMed  CAS  Google Scholar 

  • Ishizaki H, Brady JF, Ning SM et al (1990) Effect of phenethyl isothiocyanate on microsomal N-nitrosodimethylamine metabolism and other monooxygenase activities. Xenobiotica 20:255–264

    PubMed  CAS  Google Scholar 

  • Izzotti A, Calin GA, Steele VE et al (2010a) Chemoprevention of cigarette smoke-induced alterations of MicroRNA expression in rat lungs. Cancer Prev Res 3:62–72

    CAS  Google Scholar 

  • Izzotti A, Larghero P, Cartiglia C et al (2010b) Modulation of microRNA expression by budesonide, phenethyl isothiocyanate and cigarette smoke in mouse liver and lung. Carcinog 31:894–901

    CAS  Google Scholar 

  • Jakubíková J, Sedlák J, Bacon J et al (2005) Effects of MEK1 and PI3K inhibitors on allyl-, benzyl- and phenylethyl-isothiocyanate-induced G2/M arrest and cell death in Caco-2 cells. Int J Oncol 27:1449–1458

    PubMed  Google Scholar 

  • Ji Y, Kuo Y, Morris ME (2005) Pharmacokinetics of dietary phenethyl isothiocyanate in rats. Pharm Res 22:1658–1666

    PubMed  CAS  Google Scholar 

  • Jiao D, Conaway CC, Wang MH et al (1996) Inhibition of N-nitrosodimethylamine demethylase in rat and human liver microsomes by isothiocyanates and their glutathione, L-cysteine, and N-acetyl-L-cysteine conjugates. Chem Res Toxicol 9:932–938

    PubMed  CAS  Google Scholar 

  • Jiao D, Smith TJ, Yang CS et al (1997) Chemopreventive activity of thiol conjugates of isothiocyanates for lung tumorigenesis. Carcinog 18:2143–2147

    CAS  Google Scholar 

  • Kanzawa T, Kondo Y, Ito H et al (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108

    PubMed  CAS  Google Scholar 

  • Kang L, Wang ZY (2010) Breast cancer cell growth inhibition by phenethyl isothiocyanate is associated with down-regulation of oestrogen receptor-α36. J Cell Mol Med 14:1485–1493

    PubMed  CAS  Google Scholar 

  • Kang L, Ding L, Wang ZY (2009) Isothiocyanates repress estrogen receptor alpha expression in breast cancer cells. Oncol Rep 21:185–192

    PubMed  CAS  Google Scholar 

  • Kelemen LE, Wang SS, Lim U et al (2008) Vegetables- and antioxidant-related nutrients, genetic susceptibility, and non-Hodgkin lymphoma risk. Cancer Causes Control 19:491–503

    PubMed  Google Scholar 

  • Keum YS, Owuor ED, Kim BR et al (2003) Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). Pharm Res 20:1351–1356

    PubMed  CAS  Google Scholar 

  • Keum YS, Jeong WS, Kong AN (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 555:191–202

    PubMed  CAS  Google Scholar 

  • Khor TO, Cheung WK, Prawan A et al (2008) Chemoprevention of familial adenomatous polyposis in Apc Min/+ mice by phenethyl isothiocyanate (PEITC). Molecular carcinogenesis 47:321–325

    Google Scholar 

  • Kim JH, Xu C, Keum YS et al (2006) Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin. Carcinog 27:475–482

    CAS  Google Scholar 

  • Kirsh VA, Peters U, Mayne ST et al (2007) Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst 99:1200–1209

    PubMed  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS et al (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    PubMed  CAS  Google Scholar 

  • Kondo Y, Shen L, Yan PS et al (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA 101:7398–7403

    PubMed  CAS  Google Scholar 

  • Konsue N, Ioannides C (2008) Tissue differences in the modulation of rat cytochromes P450 and phase II conjugation systems by dietary doses of phenethyl isothiocyanate. Food Chem Toxicol 46:3677–3683

    PubMed  CAS  Google Scholar 

  • Konsue N, Ioannides C (2010) Modulation of carcinogen-metabolising cytochromes P450 in human liver by the chemopreventive phytochemical phenethyl isothiocyanate, a constituent of cruciferous vegetables. Toxicol 268:184–190

    CAS  Google Scholar 

  • Konsue N, Kirkpatrick J, Kuhnert N et al (2010) Repeated oral administration modulates the pharmacokinetic behavior of the chemopreventive agent phenethyl isothiocyanate in rats. Mol Nutr Food Res 54:426–432

    PubMed  CAS  Google Scholar 

  • Kumar A, Sabbioni G (2010) New biomarkers for monitoring the levels of isothiocyanates in humans. Chem Res Toxicol 23:756–765

    PubMed  CAS  Google Scholar 

  • Kumar A, Vineis P, Sacerdote C et al (2010) Determination of new biomarkers to monitor the dietary consumption of isothiocyanates. Biomarkers 15:739–745

    PubMed  CAS  Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC et al (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548

    PubMed  CAS  Google Scholar 

  • Kvale G, Bjelke E, Gart JJ (1983) Dietary habits and lung cancer risk. Int J Cancer 31:397–405

    PubMed  CAS  Google Scholar 

  • Lai KC, Hsu SC, Kuo CL et al (2010) Phenethyl isothiocyanate inhibited tumor migration and invasion via suppressing multiple signal transduction pathways in human colon Cancer HT29 cells. J Agric Food Chem 58:11148–11155

    CAS  Google Scholar 

  • Lee JW, Cho MK (2008) Phenethyl isothiocyanate induced apoptosis via down regulation of Bcl-2/XIAP and triggering of the mitochondrial pathway in MCF-7 cells. Arch Pharm Res 31:1604–1612

    PubMed  CAS  Google Scholar 

  • Liebes L, Conaway CC, Hochster H et al (2001) High-performance liquid chromatography-based determination of total isothiocyanate levels in human plasma: application to studies with 2-phenethyl isothiocyanate. Anal Biochem 291:279–289

    PubMed  CAS  Google Scholar 

  • Lubet RA, Steele VE, Eto I et al (1997) Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int J Cancer 72:95–101

    PubMed  CAS  Google Scholar 

  • McCune K, Mehta R, Thorat MA et al (2010) Loss of ERα and FOXA1 expression in a progression model of luminal type breast cancer: insights from PyMT transgenic mouse model. Oncol Rep 24:1233–1239

    PubMed  Google Scholar 

  • Mi L, Wang X, Govind S et al (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res 67:6409–6416

    PubMed  CAS  Google Scholar 

  • Mi L, Xiao Z, Hood BL et al (2008) Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 283:22136–22146

    PubMed  CAS  Google Scholar 

  • Mi L, Gan N, Chung FL (2009) Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery. Biochem Biophys Res Commun 388:456–462

    PubMed  CAS  Google Scholar 

  • Mi L, Gan N, Chung FL (2010a) Isothiocyanates inhibit proteasome activity and proliferation of multiple myeloma cells. Carcinog 32:216–223

    Google Scholar 

  • Mi L, Sirajiddin P, Gan N et al (2010b) A cautionary note on using N-acetylcysteine as an antagonist to assess isothiocyanate-induced reactive oxygen species-mediated apoptosis. Anal Biochem 405:269–271

    PubMed  CAS  Google Scholar 

  • Michaud DS, Spiegelman D, Clinton SK et al (1999) Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J Natl Cancer Inst 91:605–613

    PubMed  CAS  Google Scholar 

  • Miyake H, Muramaki M, Kurahashi T et al (2006) Expression of clusterin in prostate cancer correlates with Gleason score but not with prognosis in patients undergoing radical prostatectomy without neoadjuvant hormonal therapy. Urology 68:609–614

    PubMed  Google Scholar 

  • Morse MA, Eklind KI, Hech SS et al (1991) Structure-activity relationships for inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone lung tumorigenesis by arylalkyl isothiocyanates in A/J mice. Cancer Res 51:1846–1850

    PubMed  CAS  Google Scholar 

  • Moy KA, Yuan JM, Chung FL et al (2008) Urinary total isothiocyanates and colorectal cancer: a prospective study of men in Shanghai, China. Cancer Epidemiol Biomarkers Prev 17:1354–1359

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Bhattacharya RK, Roy M (2009a) Targeting protein kinase C (PKC) and telomerase by phenethyl isothiocyanate (PEITC) sensitizes PC-3 cells towards chemotherapeutic drug-induced apoptosis. J Environ Pathol Toxicol Oncol 28:269–282

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Dey S, Bhattacharya RK et al (2009b) Isothiocyanates sensitize the effect of chemotherapeutic drugs via modulation of protein kinase C and telomerase in cervical cancer cells. Mol Cell Biochem 330:9–22

    PubMed  CAS  Google Scholar 

  • Nakajima M, Yoshida R, Shimada N et al (2001) Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metab Disp 29:1110–1113

    CAS  Google Scholar 

  • Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17:471–480

    PubMed  CAS  Google Scholar 

  • Ogawa K, Futakuchi M, Hirose M et al (1998) Stage and organ dependent effects of 1-O-hexyl-2,3,5-trimethylhydroquinone, ascorbic acid derivatives, n-heptadecane-8-10-dione and phenylethyl isothiocyanate in a rat multiorgan carcinogenesis model. Int J Cancer 76:851–856

    PubMed  CAS  Google Scholar 

  • Ogawa K, Hirose M, Sugiura S et al (2001) Dose-dependent promotion by phenylethyl isothiocyanate, a known chemopreventer, of two-stage rat urinary bladder and liver carcinogenesis. Nutr Cancer 40:134–139

    PubMed  CAS  Google Scholar 

  • Pan SY, Ugnat AM, Mao Y et al (2004) A case-control study of diet and the risk of ovarian cancer. Cancer Epidemiol Biomarkers Prev 13:1521–1527

    PubMed  Google Scholar 

  • Plate AYA, Gallaher DD (2006) Effects of indole-3-carbinol and phenethyl isothiocyanate on colon carcinogenesis induced by azoxymethane in rats. Carcinog 27:287–292

    CAS  Google Scholar 

  • Powolny AA, Singh SV (2010) Differential response of normal (PrEC) and cancerous human prostate cells (PC-3) to phenethyl isothiocyanate-mediated changes in expression of antioxidant defense genes. Pharm Res 27:2766–2775

    PubMed  CAS  Google Scholar 

  • Powolny AA, Bommareddy A, Hahm ER et al (2011) Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst 103:571–584

    PubMed  CAS  Google Scholar 

  • Pullar JM, Thomson SJ, King MJ et al (2004) The chemopreventive agent phenethyl isothiocyanate sensitizes cells to Fas-mediated apoptosis. Carcinogenesis 25:765–772

    PubMed  CAS  Google Scholar 

  • Rose P, Whiteman M, Huang SH et al (2003) β-Phenylethyl isothiocyanate-mediated apoptosis in hepatoma HepG2 cells. Cell Mol Life Sci 60:1489–1503

    PubMed  CAS  Google Scholar 

  • Rose P, Armstrong JS, Chua YL et al (2005) β-phenylethyl isothiocyanate mediated apoptosis; contribution of Bax and the mitochondrial death pathway. Int J Biochem Cell Biol 37:100–119

    PubMed  CAS  Google Scholar 

  • Satyan KS, Swamy N, Dizon DS et al (2006) Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 103:261–270

    PubMed  CAS  Google Scholar 

  • Shannan B, Seifert M, Leskov K et al (2006) Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 13:12–19

    PubMed  CAS  Google Scholar 

  • Smith TJ (2001) Mechanisms of carcinogenesis inhibition by isothiocayantes. Expert Opin Investig Drugs 10:2167–2174

    PubMed  CAS  Google Scholar 

  • Smith TJ, Guo Z, Guengerich FP et al (1996) Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by human cytochrome P450 1A2 and its inhibition by phenethyl isothiocyanate. Carcinog 17:809–813

    CAS  Google Scholar 

  • Solt DB, Chang K, Helenowski I et al (2003) Phenethyl isothiocyanate inhibits nitrosamine carcinogenesis in a model for study of oral cancer chemoprevention. Cancer Lett 202:147–152

    PubMed  CAS  Google Scholar 

  • Sporn MB (1980) Combination chemoprevention of cancer. Nature 287:107–108

    PubMed  CAS  Google Scholar 

  • Sporn MB (2011) Perspective: the big C- for chemoprevention. Nature 471:S10–S11

    PubMed  CAS  Google Scholar 

  • Steinmetz KA, Potter JD, Folsom AR (1993) Vegetables, fruit, and lung cancer in the Iowa Women’s Health Study. Cancer Res 53:536–543

    PubMed  CAS  Google Scholar 

  • Stoner GD, Morrissey DT, Heur YH et al (1991) Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res 51:2063–2068

    PubMed  CAS  Google Scholar 

  • Stoner GD, Dombkowski AA, Reen RK et al (2008) Carcinogen-altered genes in rat esophagus positively modulated to normal levels of expression by both black raspberries and phenylethyl isothiocyanate. Cancer Res 68:6460–6467

    PubMed  CAS  Google Scholar 

  • Sugiura S, Ogawa K, Hirose M et al (2003) Reversibility of proliferative lesions and induction of non-papillary tumors in rat urinary bladder treated with phenylethyl isothiocyanate. Carcinog 24:547–553

    CAS  Google Scholar 

  • Syed Alwi SS, Cavell BE, Telang U et al (2010) In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. Br J Nutr 104:1288–1296

    PubMed  CAS  Google Scholar 

  • Takagi H, Shibutani M, Uneyama C et al (2005) Limited tumor-initiating activity of phenylethyl isothiocyanate by promotion with sodium L-ascorbate in a rat two-stage urinary bladder carcinogenesis model. Cancer Lett 219:147–153

    PubMed  CAS  Google Scholar 

  • Tang L, Zhang Y (2004) Dietary isothiocyanates inhibit the growth of human bladder carcinoma cells. J Nutr 134:2004–2010

    PubMed  CAS  Google Scholar 

  • Tang L, Zhang Y (2005) Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol Cancer Ther 4:1250–1259

    PubMed  CAS  Google Scholar 

  • Telang U, Morris ME (2010) Effect of orally administered phenethyl isothiocyanate on hepatic gene expression in rats. Mol Nutr Food Res 54:1802–1806

    PubMed  CAS  Google Scholar 

  • Thomson SJ, Brown KK, Pullar JM et al (2006) Phenethyl isothiocyanate triggers apoptosis in Jurkat cells made resistant by the overexpression of Bcl-2. Cancer Res 66:6772–6777

    PubMed  CAS  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H et al (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    PubMed  CAS  Google Scholar 

  • Trachootham D, Zhang H, Zhang W et al (2008) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112:1912–1922

    PubMed  CAS  Google Scholar 

  • Tseng E, Kamath A, Morris ME (2002) Effect of organic isothiocyanates on the P-glycoprotein- and MRP1-mediated transport of daunomycin and vinblastine. Pham Res 19:1509–1515

    CAS  Google Scholar 

  • Verhoeven DT, Goldbohm RA, van Poppel G et al (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomarkers Prev 5:733–748

    PubMed  CAS  Google Scholar 

  • Visanji JM, Duthie SJ, Pirie L et al (2004) Dietary isothiocyanates inhibit Caco-2 cell proliferation and induce G2/M phase cell cycle arrest, DNA damage, and G2/M checkpoint activation. J Nutr 134:3121–3126

    PubMed  CAS  Google Scholar 

  • Wang LG, Liu XM, Chiao JW (2006) Repression of androgen receptor in prostate cancer cells by phenethyl isothiocyanate. Carcinogenesis 27:2124–2132

    PubMed  CAS  Google Scholar 

  • Wang LG, Beklemisheva A, Liu XM et al (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46:24–31

    PubMed  CAS  Google Scholar 

  • Wang LG, Liu XM, Fang Y et al (2008) De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int J Oncol 33:375–380

    PubMed  CAS  Google Scholar 

  • Wang XH, Cavell BE, Syed Alwi SS et al (2009) Inhibition of hypoxia inducible factor by phenethyl isothiocyanate. Biochem Pharmacol 78:261–272

    PubMed  CAS  Google Scholar 

  • Wang X, Di Pasqua AJ, Govind S et al (2011) Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and their structure-activity relationships. J Med Chem 54:809–816

    CAS  Google Scholar 

  • Wattenberg LW (1977) Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J Natl Cancer Inst 58:395–398

    PubMed  CAS  Google Scholar 

  • Wu SJ, Ng LT, Lin CC (2005) Effects of antioxidants and caspase-3 inhibitor on the phenylethyl isothiocyanate-induced apoptotic signaling pathways in human PLC/PRF/5 cells. Eur J Pharmacol 518:96–106

    PubMed  CAS  Google Scholar 

  • Wu X, Zhu Y, Yan H et al (2010) Isothiocyanates induce oxidative stress and suppress the metastasis potential of human non-small cell lung cancer cells. BMC Cancer 10:269

    PubMed  Google Scholar 

  • Wu CL, Huang AC, Yang JS et al (2011) Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and Nitric Oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthp Res 29:1199–1209

    Google Scholar 

  • Xiao D, Singh SV (2002) Phenethyl isothiocyanate-induced apoptosis in p53-deficient PC-3 human prostate cancer cell line is mediated by extracellular signal-regulated kinases. Cancer Res 62:3615–3619

    PubMed  CAS  Google Scholar 

  • Xiao D, Singh SV (2007) Phenethyl isothiocyanate inhibits angiogenesis in vitro and ex vivo. Cancer Res 7:2239–2246

    Google Scholar 

  • Xiao D, Singh SV (2010a) Phenethyl isothiocyanate sensitizes androgen-independent human prostate cancer cells to docetaxel-induced apoptosis in vitro and in vivo. Pharm Res 27:722–731

    PubMed  CAS  Google Scholar 

  • Xiao D, Singh SV (2010b) p66Shc is indispensable for phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Cancer Res 70:3150–3158

    PubMed  CAS  Google Scholar 

  • Xiao D, Johnson CS, Trump DL et al (2004) Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells. Mol Cancer Ther 3:567–575

    PubMed  CAS  Google Scholar 

  • Xiao D, Choi S, Lee YJ et al (2005a) Role of mitogen-activated protein kinases in phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Mol Carcinog 43:130–140

    PubMed  CAS  Google Scholar 

  • Xiao D, Zeng Y, Choi S et al (2005b) Caspase-dependent apoptosis induction by phenethyl isothiocyanate, a cruciferous vegetable-derived cancer chemopreventive agent, is mediated by Bak and Bax. Clin Cancer Res 11:2670–2679

    PubMed  CAS  Google Scholar 

  • Xiao D, Lew KL, Zeng Y et al (2006) Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential. Carcinog 27:2223–2234

    CAS  Google Scholar 

  • Xiao D, Powolny AA, Moura MB et al (2010) Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 285:26558–26569

    PubMed  CAS  Google Scholar 

  • Xu K, Thornalley PJ (2001a) Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cysteine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 61:165–177

    PubMed  CAS  Google Scholar 

  • Xu K, Thornalley PJ (2001b) Signal transduction activated by the cancer chemopreventive isothiocyanates: cleavage of BID protein, tyrosine phosphorylation and activation of JNK. Br J Cancer 84:670–673

    PubMed  CAS  Google Scholar 

  • Xu C, Shen G, Chen C et al (2005) Suppression of NF-κB and NF-κB-regulated gene expression by sulforaphane and PEITC through IκBα, IKK pathway in human prostate cancer PC-3 cells. Oncogene 24:4486–4495

    PubMed  CAS  Google Scholar 

  • Xu C, Shen G, Yuan X et al (2006) ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinog 27:437–445

    Google Scholar 

  • Yang YM, Conaway CC, Chiao JW et al (2002) Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res 62:2–7

    PubMed  CAS  Google Scholar 

  • Yang YM, Jhanwar-Uniyal M, Schwartz J et al (2005) N-acetylcysteine conjugate of phenethyl isothiocyanate enhances apoptosis in growth-stimulated human lung cells. Cancer Res 65:8538–8547

    PubMed  CAS  Google Scholar 

  • Yang MD, Lai KC, Lai TY et al (2010) Phenethyl isothiocyanate inhibits migration and invasion of human gastric cancer AGS cells through suppressing MAPK and NF-kappaB signal pathways. Anticancer Res 30:2135–2143

    PubMed  CAS  Google Scholar 

  • Ye L, Zhang Y (2001) Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Carcinogenesis 22:1987–1992

    PubMed  CAS  Google Scholar 

  • Ye B, Zhang YX, Yang F et al (2007) Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate. BMC Cancer 7:90

    PubMed  Google Scholar 

  • Yin P, Kawamura T, He M et al (2009) Phenethyl isothiocyanate induces cell cycle arrest and reduction of α- and β- tubulin isotypes in human prostate cancer cells. Cell Biol Int 33:57–64

    PubMed  CAS  Google Scholar 

  • Yu R, Mandlekar S, Harvey KJ et al (1998) Chemopreventive isothiocyanates induce apoptosis and caspase-3-like protease activity. Cancer Res 58:402–408

    PubMed  CAS  Google Scholar 

  • Zhang Y (2001) Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates. Carcinogenesis 22:425–431

    PubMed  CAS  Google Scholar 

  • Zhang SM, Hunter DJ, Rosner BA et al (2000) Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev 9:477–485

    PubMed  CAS  Google Scholar 

  • Zhang H, Trachootham D, Lu W et al (2008) Effective killing of Gleevec-resistant CML cells with T315I mutation by a natural compound PEITC through redox-mediated mechanism. Leukemia 22:1191–1199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work cited from our laboratory was supported by the US PHS grant CA101753, awarded by the National Cancer Institute. Contributions of the present (Eun-Ryeong Hahm, Su-Hyeong Kim, Anuradha Sehrawat, Julie A Arlotti) and past members (Dong Xiao, Yan Zeng, Sunga Choi) of the Singh laboratory for preclinical studies on PEITC cited in this article are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra V. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Powolny, A.A., Bommareddy, A., Singh, S.V. (2012). Slow but Steady Progress in Cancer Chemoprevention with Phenethyl Isothiocyanate: Fulfilled Promises and Translational Challenges. In: Sarkar, F. (eds) Nutraceuticals and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2630-7_12

Download citation

Publish with us

Policies and ethics