Skip to main content

Criteria for Elastic Fracture

  • Chapter
Fracture Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 62))

  • 8911 Accesses

Abstract

Criteria for the growth of a pre-existing crack as generally based on reaching critical values of the stress intensity factors or energy release rate. Starting with the simplest case, that of tensile fracture in an elastic material, criteria for fracture under a range of conditions are explored. These include the initiation and evolution of cracks under mixed-mode loading, considerations of the stability of fracture, effects of temperature, fatigue crack growth and stress corrosion cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section contributed by Jacob Hochhalter.

References

  1. A.A. Griffith, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 221, 163 (1921)

    Article  Google Scholar 

  2. J.R. Rice, in Fracture an Advanced Treatise, vol. 2, ed. by H. Liebowitz (Academic Press, New York, 1968), pp. 191–311, Chap. 3

    Google Scholar 

  3. ASM Specialty Handbook, Carbon and Alloy Steels (ASM International, Materials Park, 1996)

    Google Scholar 

  4. F. Erdogan, G.C. Sih, J. Basic Eng. 85, 516 (1963)

    Google Scholar 

  5. G.C. Sih, Mechanics of Fracture, vol. 1 (1972), Chap. 1

    Google Scholar 

  6. C.W. Wu, J. Elast. 8, 2235 (1978)

    Google Scholar 

  7. R.V. Goldstein, R.L. Salganik, Int. J. Fract. 10, 507 (1974)

    Article  Google Scholar 

  8. http://www.cfg.cornell.edu/software/software.htm. Last accessed January 3, 2008

  9. J.R. Cotterell, Int. J. Fract. 16, 155 (1980)

    Article  Google Scholar 

  10. J.C. Radon, P.S. Lever, L.E. Culver, Fracture 1977, vol. 3 (University of Waterloo Press, 1977), chap. Fracture toughness of PMMA under biaxial stress, pp. 1113–1118

    Google Scholar 

  11. A. Yuse, M. Sano, Nature 362, 329 (1993)

    Article  Google Scholar 

  12. B. Yang, K. Ravi-Chandar, J. Mech. Phys. Solids 49, 91 (2001)

    Article  MATH  Google Scholar 

  13. C.S. Chen, Crack growth simulation and residual strength prediction in thin shell structures. Ph.D. thesis, Cornell University (1999)

    Google Scholar 

  14. R.G. Pettit, J.C. Newman, M.S. Domack, 19th ICAF Symposium (1997)

    Google Scholar 

  15. Palaniswamy, W. Knauss, Mech. Today 4, 87 (1978)

    Google Scholar 

  16. P. Paris, F. Erdogan, J. Basic Eng. 85, 528 (1963)

    Article  Google Scholar 

  17. R.P. Gangloff, R.S. Piascik, D.L. Dicus, J.C. Newman Jr., J. Aircr. 31(3), 720 (1994)

    Article  Google Scholar 

  18. W. Elber, Eng. Fract. Mech. 2, 37 (1970)

    Article  Google Scholar 

  19. W. Elber, in Damage Tolerance in Aircraft Structures. Elastic-Plastic Fracture, vol. 486 (American Society for Testing and Materials, Philadelphia, 1971), pp. 230–242

    Chapter  Google Scholar 

  20. S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  21. J.C. Newman, in Elastic-Plastic Fracture, vol. 1343, ed. by R.C. McClung, J.C. Newman (American Society for Testing and Materials, 2000), pp. 128–144

    Google Scholar 

  22. J.A. Newman, R.S. Piascik, Int. J. Fatigue 26, 923 (2004)

    Article  Google Scholar 

  23. A. Pilchak, R. Williams, J. Williams, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 41, 106 (2010)

    Article  Google Scholar 

  24. G.E. Kerns, M.T. Wang, R.W. Staehle, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, ed. by J. Hochmann, R.W. Staehle (National Association of Corrosion Engineers, 1973), pp. 700–734

    Google Scholar 

  25. L.L. Shreir, R.A. Jarman, G.T. Burstein, Corrosion, vol. 1 (Butterworth/Heinemann, Stoneham, 2000), Chap. 8, Effect of Mechanical Factors on Corrosion

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan T. Zehnder .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zehnder, A.T. (2012). Criteria for Elastic Fracture. In: Fracture Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2595-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2595-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2594-2

  • Online ISBN: 978-94-007-2595-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics