Skip to main content

Nano-Bio Structures Developed via Electrophoresis

  • Chapter
  • First Online:
Thin Films and Coatings in Biology

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1696 Accesses

Abstract

In recent decades, application of electric fields for manipulation of biological particles has been witnessing a rapid growth. Electrophoresis, in particular, now is a phenomenon with widespread use in biological applications and processes for manipulation of biological species such as cells, enzymes and proteins. Electrophoretic deposition (EPD) is a cheap and versatile technique based on electrophoresis in which charged particles suspended in a liquid medium move toward a substrate and deposit there following the electric field lines. Historically, only DC fields have been tried for material deposition since it was theoretically accepted that AC electric fields cause particles oscillate at their position due to field reversal in each half cycle. Recently, however, researchers showed that alternating fields can also be employed for material deposition, a fact which attracted the attention of scientists to its potentiality in separation, trapping, assembling, transportation and characterization of nano/bio particles. Works on bio-particles are performed in a wide range of frequencies. However, low frequencies (below 10 kHz) are not preferred for manipulation of biosepecies. Thus, experimental and theoretical studies have been focused on application of high frequency AC electric fields so far. Ceramic particles, in contrast, are not sensitive to non-aqueous medium without the risk of electrolysis and working at low frequencies becomes possible. Therefore, low frequency AC electrophoretic deposition (LFACEPD) is considered as a promising process for manipulation and controlled deposition of bioactive ceramic oxide thin films. This chapter deals with electrophoretic manipulation of oxide nanoparticles—through experiments as well as theoretical computations—for being deposited as bioactive thin films on substrates of various conductivities introducing some phenomena arising in such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell, J.S.: Spin-coated methacrylic acid copolymer thin films for covalent immobilization of small molecules on surface plasmon resonance substrates. Eur. Polymer J. 47, 16–23 (2011)

    Google Scholar 

  2. Uematsu, I., Matsumoto, H., Morota, K., Minagawa, M., Tanioka, A., Yamagata, Y., Inoue, K.: Surface morphology and biological activity of protein thin films produced by electrospray deposition. J. Colloid Interface Sci. 269, 336–340 (2004)

    Google Scholar 

  3. Kecskeméti, G., Kresz, N., Smausz, T., Hopp, B., Nógrádi, A.: Pulsed laser deposition of pepsin thin films. Appl. Surf. Sci. 247, 83–88 (2005)

    ADS  Google Scholar 

  4. Hopp, B., Smausz, T., Kecskeméti, G., Klini, A., Bor, Zs: Femtosecond pulsed laser deposition of biological and biocompatible thin layers. Appl. Surf. Sci. 253, 7806–7809 (2007)

    ADS  Google Scholar 

  5. Sun, S., Ho-Si, P.-H., Jed Harrison, D.: Preparation of active Langmuir-Blodgett films of glucose oxidase. Langmuir 7, 727–737 (1991)

    Google Scholar 

  6. Girard-Egrot, A.P., Godoy, S., Blum, L.J.: Enzyme association with lipidic Langmuir–Blodgett films: interests and applications in nanobioscience. Adv. Colloid Interface Sci. 116, 205–225 (2005)

    Google Scholar 

  7. Kurella, A., Dahotre, N.B.: Review paper: Surface modification for bioimplants: the role of laser surface engineering. J. Biomater. Appl. 20, 5–50 (2005)

    Google Scholar 

  8. Stan, G.E., Popescu, A.C., Mihailescu, I.N., Marcov, D.A., Mustata, R.C., Sima, L.E., Petrescu, S.M., Ianculescu, A., Trusca, R., Morosanu, C.O.: On the bioactivity of adherent bioglass thin films synthesized by magnetron sputtering techniques. Thin Solid Films 518, 5955–5964 (2010)

    ADS  Google Scholar 

  9. Tomita, S., Sato, K., Anzai, J.: Layer-by-layer assembled thin films composed of carboxyl-terminated poly(amidoamine) dendrimer as a pH-sensitive nano-device. J. Colloid Interface Sci. 326, 35–40 (2008)

    Google Scholar 

  10. Chu, J., Li, X., Zhang, J., Tang, J.: Fabrication and photoelectric response of poly(allylamine hydrochloride)/PM thin films by layer-by-layer deposition technique. Biochem. Biophys. Res. Commun. 305, 116–121 (2003)

    Google Scholar 

  11. Ma, H., Peng, J., Han, Z., Yu, X., Dong, B.: A novel biological active multilayer film based on polyoxometalate with pendant support-ligand. J. Solid State Chem. 178, 3735–3739 (2005)

    ADS  Google Scholar 

  12. Ding, B., Du, J., Hsieh, Y.-L.: Tubular multi-bilayer polysaccharide biofilms on ultra-thin cellulose fibers. J. Appl. Polym. Sci. 121, 2526–2534 (2011)

    Google Scholar 

  13. Channasanon, S., Graisuwan, W., Kiatkamjornwong, S., Hoven, V.P.: Alternating bioactivity of multilayer thin films assembled from charged derivatives of chitosan. J. Colloid Interface Sci. 316, 331–343 (2007)

    Google Scholar 

  14. Piveteau, L.-D., Girona, M.I., Schlapbach, L., Barboux, P., Boilot, J.-P., Gasser, B.: Thin films of calcium phosphate and titanium dioxide by a sol-gel route: a new method for coating medical implants. J. Mater. Sci. Mater. Med. 10, 161–167 (1999)

    Google Scholar 

  15. Anné, G., Vanmeensel, K., Vleugels, J., Van der Biest, O.: Electrophoretic deposition as a novel near net shaping technique for functionally graded biomaterials. Mater. Sci. Forum 492–493, 213–218 (2005)

    Google Scholar 

  16. Anné, G., Vanmeensel, K., Vleugels, J., Van der Biest, O.: Electrophoretic deposition as a novel near net shaping technique for functionally graded biomaterials. Key Eng. Mater. 314, 213–218 (2006)

    Google Scholar 

  17. Van der Biest, O., Vandeperre, L., Put, S., Anné, G., Vleugels, J.: Laminated and functionally graded ceramics by electrophoretic deposition. Key Eng. Mater. 333, 49–58 (2007)

    Google Scholar 

  18. Bousse, L., Cohen, C., Nikiforov, T., Chow, A., Kopf-Sill, A.R., Dubrow, R., Parce, J.W.: Electrokinetically controlled microfluidic analysis systems. Annu. Rev. Biophys. Biomol. Struct. 29, 155–181 (2000)

    Google Scholar 

  19. Wei, M., Ruys, A.J., Milthorpe, B.K., Correll, C.C., Evans, J.H.: Electrophoretic deposition of hydroxyapatite coatings on metal substrate: a nano-particulate dual coating approach. J. Sol–gel Sci. Technol. 21, 39–48 (2001)

    Google Scholar 

  20. Hasegawa, K., Kunugi, S., Tatsumisago, M., Minami, T.: Preparation of thick films by electrophoretic deposition using modified silica particles derived by sol–gel method. J. Sol–gel Sci. Technol. 15, 243–249 (1999)

    Google Scholar 

  21. Shan, W., Zhang, Y., Yang, W., Ke, C., Gao, Z., Ye, Y., Tang, Y.: Electrophoretic deposition of nanosized zeolites in non-aqueous medium and its application in fabricating thin zeolite membranes. Micropor. Mesopor. Mater. 69, 35–42 (2004)

    Google Scholar 

  22. Pallandre, A., de Lambert, B., Attia, R., Jonas, A.M., Viovy, J.-L.: Surface treatment and characterization: perspectives to electrophoresis and lab-on-chips. Electrophoresis 27, 584–610 (2006)

    Google Scholar 

  23. Stappers, L., Zhang, L., Van der Biest, O., Fransaer, J.: The effect of electrolyte conductivity on electrophoretic deposition. J. Colloid Interface Sci. 328, 436–446 (2008)

    Google Scholar 

  24. Fukada, Y., Nagarajan, N., Mekky, W., Bao, Y., Kim, H.-S., Nicholson, P.S.: Electrophoretic deposition—mechanisms, myths and materials. J. Mater. Sci. 39, 787–801 (2004)

    ADS  Google Scholar 

  25. Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): mechanisms, kinetics, and applications to ceramics. J. Am. Ceram. Soc. 79(8), 1987–2002 (1996)

    Google Scholar 

  26. Hughes, M.P.: Nanoelectromechanics in Engineering and Biology. CRC Press, Boca Raton (2003)

    Google Scholar 

  27. Van Tassel, J.J., Randall, C.A.: Mechanisms of electrophoretic deposition. Key Eng. Mater. 314, 167–174 (2006)

    Google Scholar 

  28. Ferrari, B., Moreno, R.: EPD kinetics: a review. J. Eur. Ceram. Soc. 30, 1069–1078 (2010)

    Google Scholar 

  29. Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)

    Google Scholar 

  30. Wang, X.-B., Huang, Y., Becker, F.F., Gascoyne, P.R.C.: A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J. Phys. D Appl. Phys. 27, 1571–1574 (1994)

    ADS  Google Scholar 

  31. Paunovic, M., Schlesinger, M.: Fundamentals of Electrochemical Deposition. Wiley-Interscience, New York (2006)

    Google Scholar 

  32. Masliyah, J.H., Bhattacharjee, S.: Electrokinetic and Colloid Transport Phenomena. Wiley (2006)

    Google Scholar 

  33. Tadmor, R., Hernández-Zapata, E., Chen, N., Pincus, P., Israelachvili, J.N.: Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 35, 2380–2388 (2002)

    ADS  Google Scholar 

  34. Hamley, IW.: Introduction to Soft Matter—Revised Edition Synthetic and Biological Self-Assembling Materials. Wiley (2007)

    Google Scholar 

  35. Neirinck, B., Fransaer, J., Vleugels, J., Van der Biest, O.: Aqueous electrophoretic deposition at high electric fields. Key Eng. Mater. 412, 33–38 (2009)

    Google Scholar 

  36. Dukhin, A.S., Dukhin, S.S.: A periodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules. Electrophoresis 26, 2149–2153 (2005)

    Google Scholar 

  37. Neirinck, B., Fransaer, J., Van der Biest, O., Vleugels, J.: Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD). Electrochem. Commun. 11, 57–60 (2009)

    Google Scholar 

  38. Pohl, H.A.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869–871 (1915)

    ADS  Google Scholar 

  39. Kua, C.H., Lam, Y.C., Yang, C., Youcef-Toumi, K.: Review of Bio-Particle Manipulation Using Dielectrophoresis. DSpace, MIT, Cambridge, Innovation in Manufacturing Systems and Technology collection, Singapore-MIT Alliance community (2005)

    Google Scholar 

  40. Jones, T.B.: Basic Theory of Dielectrophoresis and Electrorotation, IEEE Engineering in Medicine and Biology Magazine, Nov/Dec, 33–42 (2003)

    Google Scholar 

  41. Srivastava, S.K., Gencoglu, A., Minerick, A.R.: DC insulator dielectrophoretic applications in microdevice technology: a review. Anal. Bioanal. Chem. 399, 301–321 (2011)

    Google Scholar 

  42. Douglas, J.F., Zhou, H.-X., Hubbard, J.B.: Hydrodynamic friction and the capacitance of arbitrarily shaped objects. Phys. Rev. E 49(6), 5319–5331 (1994)

    ADS  Google Scholar 

  43. Swanson, E., Teller, D.C., de Haën, C.: Creeping flow translational resistance of rigid assemblies of spheres. J. Chem. Phys. 72, 1623–1628 (1980)

    ADS  Google Scholar 

  44. Swanson, E., Teller, D.C.: The low Reynolds number translational friction of ellipsoids, cylinders, dumbbells, and hollow spherical caps. Numerical testing of the validity of the modified Oseen tensor in computing the friction of objects modeled as beads on a shell. J. Chem. Phys. 68, 5097–5102 (1978)

    ADS  Google Scholar 

  45. Hubbard, J.B., Douglas, J.F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E. 47(5), R2983–R2986 (1993)

    ADS  Google Scholar 

  46. Wei, H., Craig, A., Huey, B.D., Papadimitrakopoulos, F., Marcus, H.L.: Electric field and tip geometry effects on dielectrophoretic growth of carbon nanotube nanofibrils on scanning probes. Nanotechnology 19, 455303 (2008)

    ADS  Google Scholar 

  47. Morgan, H., Green, N.G.: AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press, Philadelphia (2003)

    Google Scholar 

  48. Hulman, M., Tajmar, M.: The dielectrophoretic attachment of nanotube fibres on tungsten needles. Nanotechnology 18, 145504 (2007)

    ADS  Google Scholar 

  49. Kim, J.-E., Han, C.-S.: Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology 16, 2245–2250 (2005)

    ADS  Google Scholar 

  50. Asokan, S.B., Jawerth, L., Lloyd Carroll, R., Cheney, R.E., Washburn, S., Superfine, R.: Two-dimensional manipulation and orientation of actin-myosin systems with dielectrophoresis. Nano Lett. 3(4), 431–437 (2003)

    ADS  Google Scholar 

  51. Pethig, R.: Review article—Dielectrophoresis: status of the theory, technology, and application. Biomicrofluidics 4, 022811 (2010)

    Google Scholar 

  52. Dimaki, M., Bøggild, P.: Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology 15, 1095–1102 (2004)

    ADS  Google Scholar 

  53. Lima, M.D., de Andrade, M.J., Bergmann, C.P., Roth, S.: Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition. J. Mater. Chem. 18, 776–779 (2008)

    Google Scholar 

  54. Gimsa, J.: A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54, 23–31 (2001)

    Google Scholar 

  55. Green, N.G., Jones, T.B.: Numerical determination of the effective moments of non-spherical particles. J. Phys. D: Appl. Phys. 40, 78–85 (2007)

    ADS  Google Scholar 

  56. Neirinck, B., Van Mellaert, L., Fransaer, J., Van der Biest, O., Anné, J., Vleugels, J.: Electrophoretic deposition of bacterial cells. Electrochem. Commun. 11, 1842–1845 (2009)

    Google Scholar 

  57. Hilding, J., Grulke, E.A., George Zhang, Z., Lockwood, F.: Dispersion of carbon nanotubes in liquids. J. Dispersion Sci. Technol. 24(1), 1–47 (2003)

    Google Scholar 

  58. Van der Biest, O.O., Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999)

    ADS  Google Scholar 

  59. Hamagami, J., Ato, Y., Kanamura, K.: Fabrication of highly ordered macroporous apatite coating onto titanium by electrophoretic deposition method. Solid State Ionics 172, 331–334 (2004)

    Google Scholar 

  60. Yousefpour, M., Afshar, A., Chen, J., Zhang, X.: Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates. Mater. Sci. Eng., C 27, 1482–1486 (2007)

    Google Scholar 

  61. Wang, R., Hu, Y.X.: Patterning hydroxyapatite biocoating by electrophoretic deposition. J. Biomed. Mater. Res. 67A(1), 270–275 (2003)

    Google Scholar 

  62. Wang, R.: Pearl powder bio-coating and patterning by electrophoretic deposition. J. Mater. Sci. 39, 4961–4964 (2004)

    ADS  Google Scholar 

  63. Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I.: Electrophoretic deposition of biomaterials. J. R. Soc. Interface 7, S581–S613 (2010)

    Google Scholar 

  64. Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)

    Google Scholar 

  65. Shirtliff, V.J., Hench, L.L.: Bioactive materials for tissue engineering, regeneration and repair. J. Mater. Sci. 38, 4697–4707 (2003)

    ADS  Google Scholar 

  66. Grandfield, K., Zhitomirsky, I.: Electrophoretic deposition of composite hydroxyapatite–silica–chitosan coatings. Mater. Charact. 59, 61–67 (2008)

    Google Scholar 

  67. Das, T., Ghosh, D., Bhattacharyya, T.K., Maiti, T.K.: Biocompatibility of diamond-like nanocomposite thin films. J. Mater. Sci. Mater. Med. 18, 493–500 (2007)

    Google Scholar 

  68. Cho, Y., Shi, R., Borgens, R.B., Ivanisevic, A.: Functionalized mesoporous silica nanoparticles-based drug delivery system to rescue acrolein-mediated cell death. Nanomedicine 3(4), 507–519 (2008)

    Google Scholar 

  69. Vallet-Regí, M., Ruiz-González, L., Izquierdo-Barba, I., González-Calbet, J.M.: Revisiting silica based ordered mesoporous materials: medical applications. J. Mater. Chem. 16, 26–31 (2006)

    Google Scholar 

  70. Melde, B.J., Johnson, B.J., Charles, P.T.: Mesoporous silicate materials in sensing. Sensors 8, 5202–5228 (2008)

    Google Scholar 

  71. Arcos, D., Izquierdo-Barba, I., Vallet-Regí, M.: Promising trends of bioceramics in the biomaterials field. J. Mater. Sci. Mater. Med. 20, 447–455 (2009)

    Google Scholar 

  72. Huang, W.-C., Hu, S.-H., Liu, K.-H., Chen, S.-Y., Liu, D.-M.: A flexible drug delivery chip for the magnetically-controlled release of anti-epileptic drugs. J. Controlled Release 139, 221–228 (2009)

    Google Scholar 

  73. Oetzel, C., Clasen, R.: Preparation of zirconia dental crowns via electrophoretic deposition. J. Mater. Sci. 41, 8130–8137 (2006)

    ADS  Google Scholar 

  74. Singh, I., Kaya, C., Shaffer, M.S.P., Thomas, B.C., Boccaccini, A.R.: Bioactive ceramic coatings containing carbon nanotubes on metallic substrates by electrophoretic deposition. J. Mater. Sci. 41, 8144–8151 (2006)

    ADS  Google Scholar 

  75. Sakurada, O.: Electrophoretic bubble-free deposition on anodes from aqueous alumina and zirconia suspensions with hydroquinone: fabrication of alumina/zirconia gradiented composites. J. Ceram. Soc. Jpn. 112(PacRim5 Special Issue), S153–S155 (2004)

    Google Scholar 

  76. Tabellion, J., Clasen, R.: Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses—applications. J. Mat. Sci. 39, 803–811 (2004)

    ADS  Google Scholar 

  77. Uchikoshi, T., Ozawa, K., Hatton, B.D., Sakka, Y.: Dense, bubble-free ceramic deposits from aqueous suspensions by electrophoretic deposition. J. Mater. Res. 16(2), 321–324 (2001)

    ADS  Google Scholar 

  78. Hayward, R.C., Saville, D.A., Aksay, I.A.: Electrophoretic assembly of colloidal crystals with optically tunablemicropatterns. Nature 404, 56–59 (2000)

    ADS  Google Scholar 

  79. Besra, L., Samantaray, P., Bhattacharjee, S., Singh, B.P.: Electrophoretic deposition of alumina on stainless steel from non-aqueous suspension. J. Mater. Sci. 42, 5714–5721 (2007)

    ADS  Google Scholar 

  80. Hirata, Y., Nishimoto, A., Ishihara, Y.: Forming of alumina powder by electrophoretic deposition. J. Ceram. Soc. Jpn. 99, 108–113 (1991)

    Google Scholar 

  81. Gardeshzadeh, A.R., Raissi, B., Marzbanrad, E.: Preparation of Si powder thick films by low frequency alternating electrophoretic deposition. J. Mater. Sci. 43, 2507–2508 (2008)

    ADS  Google Scholar 

  82. Riahifar, R., Raissi, B., Marzbanrad, E., Zamani, C.: Effect of parameters on deposition pattern of ceramic nanoparticles in non-uniform AC electric field. J. Mater. Sci.: Mater. Electron. 22, 40–46 (2011)

    Google Scholar 

  83. Riahifar, R.: Ceramic oxide nanoparticle trajectory modeling in AC electric fields. Department of Ceramics, Materials and Energy Research Center (MERC) Iran. PhD Thesis (2010)

    Google Scholar 

  84. Green, N.G., Ramos, A., González, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys. Rev. E 66, 026305 (2002)

    ADS  Google Scholar 

  85. Foster, K.R., Sauer, F.A., Schwan, H.P.: Electrorotation and levitation of cells and colloidal particles. Biophys. J. 63, 180–190 (1992)

    ADS  Google Scholar 

  86. Riahifar, R., Marzbanrad, E., Raissi Dehkordi, B., Zamani, C.: Role of substrate potential on filling the gap between two planar parallel electrodes in electrophoretic deposition. Mater. Lett. 64, 559–561 (2010)

    Google Scholar 

  87. Riahifar, R., Marzbanrad, E., Raissi, B., Zamani, C.: A new technique for micro-patterning of nanoparticles on non-conductive substrate by low frequency AC electrophoresis. J. Mater. Sci.: Mater. Electron. (2011). doi: 10.1007/s10854.011-0288-y

  88. Evans, P., Sheel, D.W.: Photoactive and antibacterial TiO2 thin films on stainless steel. Surf. Coat. Technol. 201, 9319–9324 (2007)

    Google Scholar 

  89. Ishizaki, K., Sugita, Y., Iwasa, F., Minamikawa, H., Ueno, T., Yamada, M., Suzuki, T., Ogawa, T.: Nanometer-thin TiO2 enhances skeletal muscle cell phenotype and behavior. Int. J. Nanomed. 6, 2191–2203 (2011)

    Google Scholar 

  90. Hawk, H.A., Ira, P.: Separation of living and dead cells by dielectrophoresis science. Science 152, 647–649 (1966)

    ADS  Google Scholar 

  91. Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electric-field-induced fluid flow in microelectrodes. J. Colloid Interface Sci. 217, 420–422 (1999)

    Google Scholar 

  92. Riahifar, R., Marzbanrad, E., Raissi, B., Zamani, C., Kazemzad, M., Aghaei, A.: Sorting ZnO particles of different shapes with low frequency AC electric fields. Mater. Lett. 65, 632–635 (2011)

    Google Scholar 

  93. Thévenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification. Pure Appl. Chem. 71(12), 2333–2348 (1999)

    Google Scholar 

  94. Vo-Dinh, T., Cullum, B.: Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 366, 540–551 (2000)

    Google Scholar 

  95. Pohanka, M., Skládal, P.: Electrochemical biosensors—principles and applications. J. Appl. Biomed. 6, 57–64 (2008)

    Google Scholar 

  96. Yogeswaran, U., Chen, S.-M.: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8, 290–313 (2008)

    Google Scholar 

  97. Hall, R.H.: Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect. 4, 425–432 (2002)

    Google Scholar 

  98. Jenison, R., La, H., Haeberli, A., Ostroff, R., Polisky, B.: Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin. Chem. 47(10), 1894–1900 (2001)

    Google Scholar 

  99. Mohanty, S.P., Kougianos, E.: Biosensors: a tutorial review. IEEE Potentials (March/April), 35–40 (2006)

    Google Scholar 

  100. Grieshaber, D., MacKenzie, R., Vörös, J., Reimhult, E.: Electrochemical biosensors—sensor principles and architectures. Sensors 8, 1400–1458 (2008)

    Google Scholar 

  101. Zribi, A., Fortin, J. (ed.): Functional Thin Films and Nanostructures for Sensors Synthesis, Physics, and Applications. Springer (2009)

    Google Scholar 

  102. Velev, O.D., Kaler, E.W.: In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 15(11), 3693–3698 (1999)

    Google Scholar 

  103. Luo, X.-L., Xu, J.-J., Du, Y., Chen, H.-Y.: A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal. Biochem. 334, 284–289 (2004)

    Google Scholar 

  104. Fiorito, P.A., Córdoba de Torresi, S.I.: Optimized multilayer oxalate biosensor. Talanta 62, 649–654 (2004)

    Google Scholar 

  105. Xu, Q., Zhu, J.-J., Hu, X.-Y.: Ordered mesoporous polyaniline film as a new matrix for enzyme immobilization and biosensor construction. Anal. Chim. Acta 597, 151–156 (2007)

    Google Scholar 

  106. Li, F., Wang, Z., Chen, W., Zhang, S.: A simple strategy for one-step construction of bienzyme biosensor by in situ formation of biocomposite film through electrodeposition. Biosens. Bioelectron. 24, 3030–3035 (2009)

    Google Scholar 

  107. Ammam, M., Fransaer, J.: AC-electrophoretic deposition of glucose oxidase. Biosens. Bioelectron. 25, 191–197 (2009)

    Google Scholar 

  108. Meng, D., Francis, L., Roy, I., Boccaccini, A.R.: Using electrophoretic deposition to identify protein charge in biological medium. J. Appl. Electrochem. 41, 919–923 (2011)

    Google Scholar 

  109. Dhand, C., Sumana, G., Datta, M., Malhotra, B.D.: Electrophoretically deposited nano-structured polyaniline film for glucose sensing. Thin Solid Films 519, 1145–1150 (2010)

    ADS  Google Scholar 

  110. Dhand, C., Singh, S.P., Arya, S.K., Datta, M., Malhotra, B.D.: Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Anal. Chim. Acta 602, 244–251 (2007)

    Google Scholar 

  111. Suehiro, J.: Fabrication and characterization of nanomaterial-based sensors using dielectrophoresis. Biomicrofluidics 4, 022804 (2010)

    Google Scholar 

  112. McCormick, A.J., Bombelli, P., Scott, A.M., Philips, A.J., Smith, A.G., Fisher, A.C., Howe, C.J.: Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 4, 4699–4709 (2011)

    Google Scholar 

  113. Rosenbaum, M., Schröder, U.: Photomicrobial solar and fuel cells. Electroanalysis 22(7–8), 844–855 (2010)

    Google Scholar 

  114. Driver, A., Bombelli, P.: Biophotovoltaics energy from algae. Catalyst, pp. 13–15, April (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Zamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zamani, C. (2013). Nano-Bio Structures Developed via Electrophoresis. In: Nazarpour, S. (eds) Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2592-8_5

Download citation

Publish with us

Policies and ethics