Skip to main content

Repair of DNA Double-Strand Breaks

Biochemical and Spatio-Temporal Aspects

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Abstract

The genetic information of cells continuously undergoes damage induced by intracellular processes including energy metabolism, DNA replication and transcription, and by environmental factors such as mutagenic chemicals and UV and ionizing radiation. This causes numerous DNA lesions, including double strand breaks (DSBs). Since cells cannot escape this damage or normally function with a damaged genome, several DNA repair mechanisms have evolved. Although most “single-stranded” DNA lesions are rapidly removed from DNA without permanent damage, DSBs completely break the DNA molecule, presenting a real challenge for repair mechanisms, with the highest risk among DNA lesions of incorrect repair. Hence, DSBs can have serious consequences for human health. Therefore, in this chapter, we will refer only to this type of DNA damage. In addition to the biochemical aspects of DSB repair, which have been extensively studied over a long period of time, the spatio-temporal organization of DSB induction and repair, the importance of which was recognized only recently, will be considered in terms of current knowledge and remaining questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    the function of MRN as a DSB sensor (53; 66; 93) is also hardly conceivable if only 15% of DSBs require MRN for their repair (even thought MRN colocalizes with DSBs in general)

  2. 2.

    however it should be kept on mind that not all individual foci of repair proteins necessarily colocalize with γH2AX and represent DSBs (199)

  3. 3.

    frequently induced by (densely) ionizing IR

  4. 4.

    since epigenetic “mutations” (like persisting γH2AX phosphorylation) may affect megabase-large chromatin domains

  5. 5.

    except translocations

  6. 6.

    Multiple complex DSBs introduced into DNA by densely ionizing radiation (229; 230) also require additional extensive processing of damaged DNA ends as compared to repair of simple DSBs induced by low-LET IR (231; 232; 233). Both higher-order chromatin structure and DSB characteristics thus may determine individual steps of the repair mechanism

  7. 7.

    provoked either by DSB induction or repair

  8. 8.

    due to the global higher-order chromatin structure

  9. 9.

    of similar molecular sizes or nuclear volumes

  10. 10.

    and not misinterpreted as euchromatic

  11. 11.

    but not simply its compactness

References

  1. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular Biology of the Cell, 5th edn. WH Freeman, New York

    Google Scholar 

  2. Mani RS, Chinnaiyan AM (2010) Nat Rev Genet 11(12), 819–29. Review

    Google Scholar 

  3. Vilenchik MM, Knudson AG (2003) Proc Natl Acad Sci U S A 28; 100(22), 12871–6.

    Google Scholar 

  4. Obe G, Johannes C, Schulte-Frohlinde D (1992) Mutagenesis 7(1), 3–12. Review

    Google Scholar 

  5. Olive PL (1998) Radiat Res 150(5 Suppl), S42–51. Review

    Google Scholar 

  6. Jeggo PA (1998) DNA breakage and Repair. In: Hall JC, Dunlap JC, Friedmann T, Giannelli F (ed) Advances in Genetics 38, Academic Press, San Diego.

    Google Scholar 

  7. Vilenchik MM, Knudson AG Jr (2000) Proc Natl Acad Sci U S A 97(10), 5381–6.

    Article  ADS  Google Scholar 

  8. Harper JV, Anderson JA, O’Neill P (2010) DNA Repair 9(8), 907–913. DOI:10.1016/j.dnarep.2010.06.002

    Article  Google Scholar 

  9. Povrik F and Austin MJF (1991) Mutat Res 257, 127–143.

    Google Scholar 

  10. Jackson SP, Bartek J (2009) Nature 461(7267), 1071–8. Review

    Google Scholar 

  11. Podhorecka M, Skladanowski A, Bozko P (2010) J Nucleic Acids 2011. doi:10.4061/2011/920161Review

    Google Scholar 

  12. Khanna KK, Jackson SP (2001) Nat Genet 27(3), 247–54. Review

    Google Scholar 

  13. Morio T, Kim H (2008) Int J Biochem Cell Biol 40(4), 598–603. DOI:10.1016/j.biocel.2007.12.007

    Article  Google Scholar 

  14. Nijnik A, Woodbine L, Marchetti C, et al (2007) Nature 447(7145), 686–90.

    Article  ADS  Google Scholar 

  15. Caldecott KW (2011) Eukaryotic DNA Damage Surveillance and Repair (Molecular Biology Intelligence Unit), 1st edn. Springer

    Google Scholar 

  16. Ljungman M (2009) Chem Rev 109(7), 2929–50. Review

    Google Scholar 

  17. Fan R, Kumaravel TS, Jalali F, Marrano P, Squire JA, Bristow RG (2004) Cancer Res 64(23), 8526–33.

    Article  Google Scholar 

  18. Powell SN, Kachnic LA (2008) Anticancer Agents Med Chem 8(4), 448–60. Review

    Google Scholar 

  19. Jung D, Alt FW (2004) Unraveling V(D)J recombination; insights into gene regulation. Cell 116(2), 299–311. Review

    Google Scholar 

  20. Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Annu Rev Immunol 24, 541–70. Review

    Google Scholar 

  21. Franco S, Murphy MM, Li G, Borjeson T, Boboila C, Alt FW (2008) J Exp Med 205(3), 557–64.

    Article  Google Scholar 

  22. Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW (2007) Adv Immunol 94,157–214. Review

    Google Scholar 

  23. Limoli CL, Giedzinski E, Bonner WM, Cleaver JE (2002) Proc Natl Acad Sci U S A 99(1), 233–8.

    Article  ADS  Google Scholar 

  24. Rothstein R, Michel B, Gangloff S (2000) Genes Dev 14(1), 1–10. Review

    Google Scholar 

  25. Shrivastav M, De Haro LP, Nickoloff JA (2008) Cell Res 18(1), 134–47. Review

    Google Scholar 

  26. Keeney S, Neale MJ (2006) Biochem Soc Trans 34(Pt4), 523–5. Review

    Google Scholar 

  27. Maresca B, Schwartz JH (2006) Anat Rec B New Anat 289(1), 38–46. Review

    Google Scholar 

  28. Obolensky OI, Surdutovich E, Pshenichnov I, Mishustin I, Solov’yov AV, Greiner W (2008) Nucl Instrum Methods Phys Res Section B: Beam Interactions with Materials and Atoms 266(8), 1623–1628. DOI:10.1016/j.nimb.2007.11.054.

    Google Scholar 

  29. Harper JW, Elledge SJ (2007) Mol Cell 28(5), 739–45. Review

    Google Scholar 

  30. Pontier DB, Tijsterman M (2009) Cur Biol 19(16), 1384–1388. DOI:10.1016/j.cub.2009.06.045

    Article  Google Scholar 

  31. Griffiths AJF, Wessler SR, Carroll SB Doebley J (2011) Introduction to genetic analysis, 10th edn. Macmillan.

    Google Scholar 

  32. Bertrand P, Tishkoff DX, Filosi N, Dasgupta R, Kolodner RD (1998) Proc Natl Acad Sci U S A 95(24), 14278–83.

    Article  ADS  Google Scholar 

  33. Hoeijmakers JH (2001) Nature 411(6835), 366–74. Review

    Google Scholar 

  34. Hoeijmakers JH (2001). Maturitas 38(1), 17–22. Review

    Google Scholar 

  35. Peterson CL, Côté J (2004) Genes Dev 18(6), 602–16. Review

    Google Scholar 

  36. Spry M, Scott T, Pierce H, D’Orazio JA (2007) Front Biosci 12, 4191–207. Review

    Google Scholar 

  37. Neher TM, Turchi J (2011) Antioxid Redox Signal [in press]

    Google Scholar 

  38. Branzei D & Foiani M (2008) Nat Rev Mol Cell Biol 9, 297–308. DOI:10.1038/nrm2351

    Article  Google Scholar 

  39. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Cell 118(6), 699–713. DOI:10.1016/j.cell.2004.08.015

    Article  Google Scholar 

  40. Iliakis G (2009) Radiother Oncol 92(3), 310–5. Review

    Google Scholar 

  41. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) DNA Repair 5(9–10), 1021–9. Review

    Google Scholar 

  42. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA Repair 7, 1765–1771.

    Article  Google Scholar 

  43. Van Nguyen T, Puebla-Osorio N, Pang H, Dujka ME, Zhu C (2007) J Exp Med 204(6), 1453–61.

    Article  Google Scholar 

  44. Roos WP, Kaina B (2006) Trends Mol Med 12(9), 440–50. Review

    Google Scholar 

  45. Bartek J, Lukas J (2007) Curr Opin Cell Biol 19(2), 238–45. Review

    Google Scholar 

  46. Sochanowicz B, Szumiel I (2005) Nukleonika 50(4), 129–138.

    Google Scholar 

  47. Assenmacher N, Hopfner KP (2004) Chromosoma 113(4), 157–66. Review

    Google Scholar 

  48. Williams RS, Williams JS, Tainer JA (2007) Biochem Cell Biol 85(4), 509–20. Review.

    Google Scholar 

  49. Iijima K, Ohara M, Seki R, Tauchi H (2008) J Radiat Res (Tokyo) 49(5), 451–64. Review

    Google Scholar 

  50. Lamarche BJ, Orazio NI, Weitzman MD (2010) FEBS Lett 584(17), 3682–95. Review

    Google Scholar 

  51. Yosef Shiloh (2003) Nat Rev Cancer 3, 155–168. DOI:10.1038/nrc1011

    Article  Google Scholar 

  52. Abraham RT (2001) Genes Dev 15(17), 2177–96. Review

    Google Scholar 

  53. Lavin MF, Kozlov S (2007) Cell Cycle 6(8), 931–42. Review

    Google Scholar 

  54. Kastan MB & Lim D (2000) Nat Rev Mol Cell Biol 1, 179–186. DOI:10.1038/35043058

    Article  Google Scholar 

  55. Bakkenist CJ, Kastan MB (2003) Nature 421(6922), 499–506.

    Article  ADS  Google Scholar 

  56. Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, Lees-Miller SP, Khanna KK (2004) EMBO J 23(22), 4451–61.

    Article  Google Scholar 

  57. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) EMBO J 22(20), 5612–21.

    Article  Google Scholar 

  58. Lee JH, Paull TT (2005) Science 308(5721), 551–4.

    Article  ADS  Google Scholar 

  59. Zhuang J, Jiang G, Willers H, Xia F (2009) J Biol Chem 284(44), 30565–73.

    Article  Google Scholar 

  60. Paull TT, Gellert M (1998) Mol Cell 1(7), 969–79.

    Article  Google Scholar 

  61. Zhuang J, Jiang G, Willers H, Xia F (2009) J Biol Chem 284(44), 30565–73.

    Article  Google Scholar 

  62. Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T (1998) Cell 95(5):705–16.

    Article  Google Scholar 

  63. Williams RS, Moncalian G, Williams JS, et al (2008) Cell 135(1), 97–109.

    Article  Google Scholar 

  64. Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) Nature 418(6897), 562–6.

    Article  ADS  Google Scholar 

  65. Tomimatsu N, Tahimic CG, Otsuki A, Burma S, Fukuhara A, Sato K, Shiota G, Oshimura M, Chen DJ, Kurimasa A (2007) J Biol Chem 282(14), 10138–45.

    Article  Google Scholar 

  66. Löbrich M, Jeggo PA (2005) DNA Repair 4(7), 749–59. Review

    Google Scholar 

  67. Riballo E, Kühne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Löbrich M (2004) Mol Cell 16(5), 715–24.

    Article  Google Scholar 

  68. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) Mol Cell 31(2), 167–77.

    Article  Google Scholar 

  69. Goodarzi AA, Noon AT, Jeggo PA (2009) Biochem Soc Trans 37(Pt 3), 569–76.

    Article  Google Scholar 

  70. Noon AT, Shibata A, Rief N, Löbrich M, Stewart GS, Jeggo PA, Goodarzi AA (2010) Nat Cell Biol 12(2), 177–84.

    Article  Google Scholar 

  71. Goodarzi AA, Jeggo P, Lobrich M (2010) DNA Repair 9(12), 1273–82

    Article  Google Scholar 

  72. Smith GCM and Jackson SP (1999) Genes Dev 13, 916–934.

    Article  Google Scholar 

  73. Gottlieb TM, Jackson SP (1993) Cell 72(1), 131–42.

    Article  Google Scholar 

  74. Meek K, Gupta S, Ramsden DA, Lees-Miller SP (2004) Immunol Rev 200, 132–41. Review

    Google Scholar 

  75. Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ (2002) Genes Dev 16(18), 2333–8.

    Article  Google Scholar 

  76. Downs JA, Jackson SP (2004) Nat Rev Mol Cell Biol 5(5), 367–78. Review

    Google Scholar 

  77. Drouet J, Frit P, Delteil C, de Villartay JP, Salles B, Calsou P (2006) IJ Biol Chem 281(38), 27784–93.

    Google Scholar 

  78. Houtgraaf JH, Versmissen J, van der Giessen WJ (2006) Cardiovascular Revascularization Medicine 7(3), 165–172. DOI:10.1016/j.carrev.2006.02.002

    Article  Google Scholar 

  79. Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, Wu W, Guan J, Terzoudi G, Pantelias G (2004) Cytogenet Genome Res 104(1–4):14–20. Review

    Google Scholar 

  80. Pastink A, Eeken JC, Lohman PH (2001) Mutat Res 480–481, 37–50. Review

    Google Scholar 

  81. Haber JE (2000) Trends Genet 16(6), 259–264. DOI:10.1016/S0168-9525(00)02022-9

    Article  Google Scholar 

  82. Yano K, Morotomi-Yano K, Adachi N, Akiyama H (2009) J Radiat Res (Tokyo) 50(2), 97–108. Review

    Google Scholar 

  83. Weterings E, van Gent DC (2004) DNA Repair (Amst) 3(11), 1425–35. Review

    Google Scholar 

  84. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Nat Rev Mol Cell Biol 4(9), 712–20. Review

    Google Scholar 

  85. Dudas A, Chovanec M (2004) Mutat Res 566(2), 131–67.

    Article  Google Scholar 

  86. McVey M, Lee SE (2008) Trends Genet 24(11), 529–38. Review

    Google Scholar 

  87. Prise KM, Pinto M, Newman HC and Michael BD (2001) Rad Res 156(5), 572–576.

    Article  Google Scholar 

  88. Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) DNA Repair 3(8–9), 845–54. Review

    Google Scholar 

  89. Paull TT, Gellert M (1999) Genes Dev 13(10), 1276–88.

    Article  Google Scholar 

  90. van den Bosch M, Bree RT, Lowndes NF (2003) EMBO Rep 4(9), 844–9. Review

    Google Scholar 

  91. Desai-Mehta A, Cerosaletti KM, Concannon P (2001) Mol Cell Biol 21(6), 2184–91.

    Article  Google Scholar 

  92. Jeggo PA, Löbrich M (2005) Cell Cycle 4(3), 359–62. Review

    Google Scholar 

  93. Lee JH, Paull TT (2004) Science 304(5667), 93–6.

    Article  ADS  Google Scholar 

  94. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) J Biol Chem 273(10), 5858–68.

    Article  Google Scholar 

  95. Sedelnikova OA, Pilch DR, Redon C, Bonner WM (2003) Cancer Biol Ther 2(3), 233–5. Review

    Google Scholar 

  96. Rogakou EP, Boon C, Redon C, Bonner WM (1999) J Cell Biol 146(5), 905–16.

    Article  Google Scholar 

  97. Stucki M, Jackson SP (2006) DNA Repair 5(5), 534–43.

    Article  Google Scholar 

  98. Minter-Dykhouse K, Ward I, Huen MS, Chen J, Lou Z (2008) J Cell Biol 181(5), 727–35.

    Article  Google Scholar 

  99. Anderson L, Henderson C, Adachi Y (2001) Mol Cell Biol 21, 1719–1729.

    Article  Google Scholar 

  100. Lou Z, Chini CC, Minter-Dykhouse K, Chen J (2003) J Biol Chem 278(16), 13599–602.

    Article  Google Scholar 

  101. Lowndes NF (2010) DNA Repair 9(10),1112–6.

    Article  Google Scholar 

  102. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) Curr Biol 10(15), 886–95.

    Article  Google Scholar 

  103. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A (2003) Nat Cell Biol 5(7), 675–9.

    Article  Google Scholar 

  104. Ward IM, Minn K, van Deursen J, Chen J (2003)Mol Cell Biol 23(7), 2556–63.

    Article  Google Scholar 

  105. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, Bartek J, Jackson SP (2003) Nature 421(6926), 952–6.

    Article  ADS  Google Scholar 

  106. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J (2007) Cell 131(5), 901–14.

    Article  Google Scholar 

  107. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D (2007) Science 318(5856), 1637–40.

    Article  ADS  Google Scholar 

  108. Venkitaraman AR (2004) Nat Rev Cancer 4(4), 266–76. Review

    Google Scholar 

  109. Bouwman P, Aly A, Escandell JM, et al (2010) Nat Struct Mol Biol 17(6), 688–95.

    Article  Google Scholar 

  110. Bunting SF, Callén E, Wong N, et al (2010) Cell 141(2), 243–54.

    Article  Google Scholar 

  111. Sung P, Klein H (2006) Nat Rev Mol Cell Biol 7(10), 739–50. Review

    Google Scholar 

  112. van den Bosch M, Lohman PH, Pastink A (2002) Biol Chem 383(6), 873–92. Review

    Google Scholar 

  113. Shcherbakov VP, Plugina L, Shcherbakova T, Sizova S, Kudryashova E (2011) DNA Repair 10(1), 16–23.

    Article  Google Scholar 

  114. Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L (2010) J Cell Sci 123(Pt23), 4063–75.

    Google Scholar 

  115. Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H (1999) J Cell Sci 112(Pt4), 525–35.

    Google Scholar 

  116. Critchlow SE, Jackson SP (1998) Trends Biochem Sci 23(10), 394–8. Review

    Google Scholar 

  117. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) Cell Cycle 7, 2902–2906.

    Article  Google Scholar 

  118. Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Annu Rev Genet 39, 431–51. Review

    Google Scholar 

  119. Goodhead DT (1994) Int J Radiat Biol 65, 7–17.

    Article  Google Scholar 

  120. Ward JF (1994) Int J Radiat Biol 66, 427–432.

    Article  Google Scholar 

  121. Pastwa E, Neumann RD, Mezhevaya K, Winters TA (2003) Radiat Res 159, 251–61.

    Article  Google Scholar 

  122. Zhang Y, Rowley JD (2006) DNA Repair 5(9–10), 1282–97. Review

    Google Scholar 

  123. Karanjawala ZE, Grawunder U, Hsieh CL, Lieber MR (1999) Curr Biol 9(24), 1501–4.

    Article  Google Scholar 

  124. Ferguson DO, Sekiguchi JM, Chang S, Frank KM, Gao Y, DePinho RA, Alt FW (2000) Proc Natl Acad Sci U S A 97(12), 6630–3.

    Article  ADS  Google Scholar 

  125. Sharpless NE, Ferguson DO, O’Hagan RC et al (2001) Mol Cell 8, 1187–1196.

    Article  Google Scholar 

  126. Lin Y, Lukacsovich T, Waldman AS (1999) Mol Cell Biol 19, 8353–8360.

    Google Scholar 

  127. Rothkamm K, Krüger I, Thompson LH, Löbrich M (2003) Mol Cell Biol 23(16), 5706–15.

    Article  Google Scholar 

  128. Chen F, Nastasi A, Shen Z, Brenneman M, Crissman H, Chen DJ (1997) Mutat Res 384(3), 205–11.

    Google Scholar 

  129. Kim JS, Krasieva TB, Kurumizaka H, Chen DJ, Taylor AM, Yokomori K (2005) J Cell Biol 170(3), 341–7.

    Article  Google Scholar 

  130. Iliakis G (2009) Radiother Oncol 92(3), 310–5. Review

    Google Scholar 

  131. Wu W, Wang M, Wu W, Singh SK, Mussfeldt T, Iliakis G (2008) DNA Repair 7(2), 329–38.

    Article  Google Scholar 

  132. Singh SK, Wu W, Zhang L, Klammer H, Wang M, Iliakis G (2011) Int J Radiat Oncol Biol Phys 79(2), 540–8.

    Article  Google Scholar 

  133. Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE (1996) Genetics 142(3), 693–704.

    Google Scholar 

  134. Frankenberg-Schwager M, Gebauer A, Koppe C, Wolf H, Pralle E and Frankenberg D (2009) Rad Res 171(3), 265–273.

    Article  Google Scholar 

  135. Falk M, Lukasova E, Kozubek S (2010) Mutat Res 704(1–3), 88–100. Review

    Google Scholar 

  136. Bekhor I, Feldman B (1976) Biochemistry 15(22), 4771–4777. DOI:10.1021/bi00667a004

    Article  Google Scholar 

  137. Wolffe AP (1999) Chromatin, Structure and Function, 3rd ed. Academic, San Diego.

    Google Scholar 

  138. Chen P, Li G (2010) Protein Cell 1(11), 967–71.

    Article  Google Scholar 

  139. Xu M, Zhu B (2010) Protein Cell 1(9), 820–9.

    Article  Google Scholar 

  140. Ray-Gallet D, Almouzni G (2010) Essays Biochem 48(1), 75–87. Review

    Google Scholar 

  141. Berezney R (2002) Adv Enzyme Regul 42, 39–52. Review

    Google Scholar 

  142. Woodcock CL, Ghosh RP (2010) Cold Spring Harb Perspect Biol 2(5), a000596. Review

    Google Scholar 

  143. Klug WS & Cummings MR & Spencer CA (2008) Concepts of Genetics, 9th edn. Prentice Hall.

    Google Scholar 

  144. Matthews HR (1997) DNA Structure Prerequisite Information. In: Campbell, Reece, Mitchell, Taylor (ed) Biology Concept and Connections. Benjamin Cummings, California.

    Google Scholar 

  145. McGraw (1997) Hill Encyclopedia of Science and Technology. McGraw Hill, New York.

    Google Scholar 

  146. McNally JG. (2009) J Cell Biol 185(1), 7–9.

    Article  Google Scholar 

  147. Dillon N (2004) Biol Cell 96(8), 631–7. Review

    Google Scholar 

  148. Jenuwein T, Allis CD (2001) Science 293(5532), 1074–80. Review

    Google Scholar 

  149. Cremer T, Cremer C (2001) Nat Rev Genet. 2001 Apr;2(4), 292–301. Review

    Google Scholar 

  150. Branco MR, Pombo A (2006) PLoS Biol 4(5), e138.

    Article  Google Scholar 

  151. Aten JA, Kanaar R (2006) PLoS Biol 4(5), e155.

    Article  Google Scholar 

  152. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nat Genet 38(11), 1348–54.

    Article  Google Scholar 

  153. Kozubek S, Lukásová E, Jirsová P, Koutná I, Kozubek M, Ganová A, Bártová E, Falk M, Paseková R (2002) Chromosoma 111(5), 321–31.

    Article  Google Scholar 

  154. Lukásová E, Kozubek S, Kozubek M, Falk M, Amrichová J (2002) Chromosome Res 10(7), 535–48.

    Article  Google Scholar 

  155. Falk M, Lukásová E, Kozubek S, Kozubek M (2002) Gene. 2002 Jun 12;292(1–2), 13–24.

    Google Scholar 

  156. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Müller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) PLoS Biol 3(5), e157

    Article  Google Scholar 

  157. Parada LA, McQueen PG, Misteli T (2004). Genome Biol 5(7), R44.

    Article  Google Scholar 

  158. Neusser M, Schubel V, Koch A, Cremer T, Müller S (2007) Chromosoma 116(3), 307–20.

    Article  Google Scholar 

  159. Caron H, van Schaik B, van der Mee M, et al (2001) Science 291(5507), 1289–92.

    Article  ADS  Google Scholar 

  160. Versteeg R, van Schaik BD, van Batenburg MF, Roos M, Monajemi R, Caron H, Bussemaker HJ, van Kampen AH (2003) Genome Res 13(9), 1998–2004.

    Article  Google Scholar 

  161. Misteli T (2005) Bioessays 27(5), 477–87. Review

    Google Scholar 

  162. Cremer T, Cremer M (2010) Cold Spring Harb Perspect Biol 2(3), a003889. Review

    Google Scholar 

  163. Sun HB, Shen J, Yokota H (2000). Biophys J 79(1), 184–90.

    Article  Google Scholar 

  164. Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) Hum Mol Genet 10(3), 211–9.

    Article  Google Scholar 

  165. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Curr Biol 10(3), 149–52.

    Article  Google Scholar 

  166. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) J Cell Biol 145(6), 1119–31.

    Article  Google Scholar 

  167. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Genome Biol 11(1), R5.

    Article  Google Scholar 

  168. Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Mol Cell 3, 207–217.

    Article  Google Scholar 

  169. Cremer C, Münkel C, Granzow M, Jauch A, Dietzel S, Eils R, Guan XY, Meltzer PS, Trent JM, Langowski J, Cremer T (1996). Mutat Res 366(2), 97–116. Review

    Google Scholar 

  170. Razin SV, Gromova II (1995) BioEssays 17, 443–450.

    Article  Google Scholar 

  171. Kosak ST, Groudine M (2002) Dev Cell 2(6), 690–2.

    Article  Google Scholar 

  172. Visser AE, Aten JA (1999) J Cell Sci 112(Pt19), 3353–60.

    Google Scholar 

  173. Francastel C, Schübeler D, Martin DI, Groudine M (2000) Nat Rev Mol Cell Biol 1(2), 137–43. Review

    Google Scholar 

  174. Sinčić N, Herceg Z (2010) Curr Opin Oncol [Epub ahead of print].

    Google Scholar 

  175. Strahl BD, Allis CD (2000) Nature 403(6765), 41–5.

    Article  ADS  Google Scholar 

  176. Nightingale KP, O’Neill LP, Turner BM (2006) Curr Opin Genet Dev 16(2), 125–36. Review

    Google Scholar 

  177. Turner BM (2007) Nat Cell Biol 9(1), 2–6.

    Article  Google Scholar 

  178. Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Nature 410(6824), 116–20.

    Article  ADS  Google Scholar 

  179. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Science 292(5514), 110–3.

    Article  ADS  Google Scholar 

  180. Allis D, Jenuwein T, Reinberg D (2007) Epigenetics. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  181. Rossetto D, Truman AW, Kron SJ, Côté J (2010) Clin Cancer Res 16(18), 4543–52.

    Article  Google Scholar 

  182. Ruthenburg AJ, Allis CD, Wysocka J (2007) Mol Cell 25, 15–30.

    Article  Google Scholar 

  183. Volpi EV, Chevret E, Jones T, et al. (2000) J Cell Sci 113, 1565–1576.

    Google Scholar 

  184. Williams RRE, Broad S, Sheer D, Ragoussis J (2002) Exp Cell Res 272, 163–175.

    Article  Google Scholar 

  185. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, et al. (2004) Nat Genet 36, 1065–1071.

    Article  Google Scholar 

  186. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Nature 435, 637–645.

    Article  ADS  Google Scholar 

  187. Sutherland H, Bickmore WA (2009) Nat Rev Genet 10(7), 457–66. Review

    Google Scholar 

  188. Dorier J, Stasiak A (2010) Nucleic Acids Res 38(21), 7410–21.

    Article  Google Scholar 

  189. Nolis IK, McKay DJ, Mantouvalou E, Lomvardas S, Merika M, Thanos D (2009) Proc Natl Acad Sci U S A 106(48), 20222–7.

    Article  ADS  Google Scholar 

  190. Woodcock CL, Ghosh RP (2010) Cold Spring Harb Perspect Biol 2(5), a000596. Review

    Google Scholar 

  191. Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Curr Biol 12(6), 439–45.

    Article  Google Scholar 

  192. Bridger JM and Mehta IS (2011) Nuclear Molecular Motors for Active, Directed Chromatin Movement in Interphase Nuclei. In: Adams NM and Freemont PS (ed) Advances in Nuclear Architecture, 1st edn. Springer, DOI:10.1007/978-90-481-9899-3_5

    Google Scholar 

  193. Belmont A (2003) Curr Opin Cell Biol 15(3), 304–10. Review

    Google Scholar 

  194. Orlowski C, Mah LJ, Vasireddy RS, El-Osta A, Karagiannis TC (2010) Chromosoma [Epub ahead of print]. Review

    Google Scholar 

  195. Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, Kanaar R (2004) Science 303(5654), 92–5.

    Article  ADS  Google Scholar 

  196. Lukas C, Bartek J, Lukas J (2005) Chromosoma 114(3), 146–54. Review

    Google Scholar 

  197. Kruhlak MJ, Celeste A, Nussenzweig A (2006) Cell Cycle 5(17), 1910–2.

    Article  Google Scholar 

  198. Loizou JI, Murr R, Finkbeiner MG, Sawan C, Wang ZQ, Herceg Z (2006) Cell Cycle 5(7), 696–701. Review

    Google Scholar 

  199. Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S (2007) Biochim Biophys Acta 1773(10), 1534–45.

    Article  Google Scholar 

  200. Falk M, Lukásová E, Kozubek S (2008) Biochim Biophys Acta 1783(12), 2398–414.

    Article  Google Scholar 

  201. Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S (2008) J Phys Conf Ser 101

    Google Scholar 

  202. Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) PLoS One 2(10), e1057.

    Article  ADS  Google Scholar 

  203. Kinner A, Wu W, Staudt C, Iliakis G (2008)Nucleic Acids Res. 36(17), 5678–94. Review

    Google Scholar 

  204. Vasireddy RS, Karagiannis TC, El-Osta A (2010) Cell Mol Life Sci. 67(2), 291–4.

    Article  Google Scholar 

  205. Karagiannis TC, Harikrishnan KN, El-Osta A (2007) Oncogene 26(27), 3963–71.

    Article  Google Scholar 

  206. Wang H, Wang M, Wang H, Böcker W and Iliakis G (2005) J Cell Physiol 202(2), 492–502.

    Article  Google Scholar 

  207. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Curr Opin Genet Dev 12(2), 162–9. Review

    Google Scholar 

  208. Rothkamm K, Lobrich M (2003) Proc Natl Acad Sci USA 100(9), 5057–62.

    Article  ADS  Google Scholar 

  209. Markova E, Schultz N, Belyaev IY (2007) Int J Radiat Biol 83(5), 319–29.

    Article  Google Scholar 

  210. Szumiel I (2007) Analysis of DNA Double-Strand Breaks by Means of γ-H2AX Foci. In: Obe, Günter, Vijayalaxmi (ed) Chromosomal Alterations 1st eds. Springer, DOI:10.1007/978-3-540-71414-9_9

    Google Scholar 

  211. Wang Y, Shyy JY, Chien S (2008) Annu Rev Biomed Eng 10, 1–38. Review

    Google Scholar 

  212. Foray N, Arlett CF, Malaise EP (1997) Biochimie 79(9–10), 567–75. Review

    Google Scholar 

  213. Foray N, Monroco C, Marples B, Hendry JH, Fertil B, Goodhead DT, Arlett CF, Malaise EP (1998) Int J Radiat Biol 74(5),551–60.

    Article  Google Scholar 

  214. Foray N, Charvet AM, Duchemin D, Favaudon V, Lavalette D (2005) J Theor Biol 236(4), 448–58.

    Article  MathSciNet  Google Scholar 

  215. Zeng W, Ball AR Jr, Yokomori K (2010) Epigenetics 5(4), 287–92. Review

    Google Scholar 

  216. Shimada A, Murakami Y (2010)Epigenetics 5(1), 30–3. Review

    Google Scholar 

  217. Dinant C, Luijsterburg MS (2009) Mol Cell Biol 29(24), 6335–40. Review

    Google Scholar 

  218. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR (2008) Nature 453(7195), 682–6.

    Article  ADS  Google Scholar 

  219. Ayoub N, Jeyasekharan AD, Venkitaraman AR (2009) Cell Cycle 8(18), 2945–50. Review

    Google Scholar 

  220. Ball AR Jr, Yokomori K (2009) J Cell Biol 185(4), 573–5. Review

    Google Scholar 

  221. Frankenberg-Schwager M, Frankenberg D (1994) Radiat Res 138(1 Suppl), S97–100. Review

    Google Scholar 

  222. Surrallés J, Sebastian S, Natarajan AT (1997) Mutagenesis 12(6), 437–42.

    Article  Google Scholar 

  223. Osley MA, Tsukuda T, Nickoloff JA (2007) Mutat Res 618(1–2), 65–80. Review

    Google Scholar 

  224. Müller WG, Walker D, Hager GL, McNally JG (2001) J Cell Biol 154(1), 33–48.

    Article  Google Scholar 

  225. Nye AC, Rajendran RR, Stenoien DL, Mancini MA, Katzenellenbogen BS, Belmont AS (2002) Mol Cell Biol 22(10), 3437–49.

    Article  Google Scholar 

  226. Carpenter AE, Memedula S, Plutz MJ, Belmont AS (2005) Mol Cell Biol 25(3), 958–68.

    Article  Google Scholar 

  227. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Nat Cell Biol 8(8), 870–6.

    Article  Google Scholar 

  228. Cann KL and Dellaire G (2011) Cell Biol 89(1), 45–60. DOI:10.1139/O10--113

    Google Scholar 

  229. Sage E, Harrison L (2010) Mutat Res. 2010 [Epub ahead of print].

    Google Scholar 

  230. Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A (2009) J Radiat Res (Tokyo) 50(1), 27–36. Review

    Google Scholar 

  231. Tsuchida Y, Tsuboi K, Ohyama H, Ohno T, Nose T, Ando K (1998) Brain Tumor Pathol 15(2), 71–6.

    Article  Google Scholar 

  232. De Laney TF, Kooy HM (2007) Proton and Charged Particle Radiotherapy. Lippincott Williams & Wilkins.

    Google Scholar 

  233. Iwadate Y, Mizoe JE, Osaka Y, Yamaura A, Tsujii H (2001) Int J Radiat Oncol Biol Phys 50(3), 803–808.

    Article  Google Scholar 

  234. van Attikum H, Gasser SM (2009) Trends Cell Biol 19(5), 207–17. Review

    Google Scholar 

  235. Ikura T, Tashiro S, Kakino A, et al (2007) Mol Cell Biol 27(20), 7028–40.

    Article  Google Scholar 

  236. Keogh MC, Kim JA, Downey M, et al. (2006) Nature 439, 497–501.

    Article  ADS  Google Scholar 

  237. Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J (2005) Mol Cell 20(5), 801–9.

    Article  Google Scholar 

  238. Krawczyk PM, Stap J, van Oven C, Hoebe R, Aten JA (2006) Radiat Prot Dosimetry 122(1–4), 150–3.

    Google Scholar 

  239. Lisby M, Mortensen UH, Rothstein R (2003) Nat Cell Biol 5(6), 572–7.

    Article  Google Scholar 

  240. Sutherland H, Bickmore WA (2009) Nat Rev Genet 10(7), 457–66. Review

    Google Scholar 

  241. Han W and Yu KN (2010) Ionizing Radiation, DNA Double Strand Break and Mutation. In: Urbano KV (ed) Advances in Genetics Research, Volume 4, Nova Science Publishers, Inc.

    Google Scholar 

  242. Natarajan AT (2002) Mutat Res 504(1–2), 3–16. Review

    Google Scholar 

  243. Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH (1998) Science 280(5363), 590–2.

    Article  ADS  Google Scholar 

  244. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007) Nat Cell Biol 9(6), 675–82.

    Article  Google Scholar 

  245. Meaburn KJ, Misteli T, Soutoglou E (2007) Semin Cancer Biol 17(1), 80–90. Review

    Google Scholar 

  246. Soutoglou E, Misteli T (2007). Curr Opin Genet Dev 17(5), 435–42. Review

    Google Scholar 

  247. Tobias F, Durante M, Taucher-Scholz G, Jakob B (2010) Mutat Res 704(1–3), 54–60. Review

    Google Scholar 

  248. Jakob B, Splinter J, Durante M, Taucher-Scholz G (2009) Proc Natl Acad Sci USA 106(9), 3172–7.

    Article  ADS  Google Scholar 

  249. Jakob B, Splinter J, Taucher-Scholz G (2009) Radiat Res 171(4), 405–18.

    Article  Google Scholar 

  250. Jakob B, Rudolph JH, Gueven N, Lavin MF, Taucher-Scholz G (2005) Radiat Res 163(6), 681–90.

    Article  Google Scholar 

  251. Costes SV, Ponomarev A, Chen JL, Nguyen D, Cucinotta FA, Barcellos-Hoff MH (2007) PLoS Comput Biol 3(8), e155.

    Article  ADS  MathSciNet  Google Scholar 

  252. Natarajan AT, Ahnström G (1969) Chromosoma 28(1), 48–61.

    Article  Google Scholar 

  253. Folle GA, Martínez-López W, Boccardo E, Obe G (1998) Mutat Res 404(1–2), 17–26.

    Google Scholar 

  254. Elia MC, Bradley MO (1992) Cancer Res 52(6), 1580–6.

    Google Scholar 

  255. Löbrich M, Cooper PK, Rydberg B (1996) Int J Radiat Biol 70(5), 493–503.

    Article  Google Scholar 

  256. Rothkamm K, Löbrich M (1999) Mutat Res 433(3), 193–205.

    Google Scholar 

  257. Sak A, Stuschke M, Stapper N, Streffer C (1996) Int J Radiat Biol 69(6), 679–85.

    Article  Google Scholar 

  258. Löbrich M, Kühne M, Wetzel J, Rothkamm K (2000) Gen Chromos Cancer 27(1), 59–68.

    Article  Google Scholar 

  259. Fouladi B, Waldren CA, Rydberg B, Cooper PK (2000) Radiat Res 153(6), 795–804.

    Article  Google Scholar 

  260. Puerto S, Ramirez MJ, Marcos R, Creus A, Surralles J (2001) Mutagenesis 16, 291–296.

    Article  Google Scholar 

  261. Martínez-López W, Folle GA, Cassina G, Méndez-Acuña L, Di-Tomaso MV, Obe G, Palitti F (2004) Cytogenet Genome Res 104(1–4), 182–7.

    Google Scholar 

  262. Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM (2002) Radiat Res 158(4), 486–92.

    Article  Google Scholar 

  263. Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA (2010) Cell Cycle 9(4), 662–9.

    Article  Google Scholar 

  264. Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) J Cell Biol 178(2), 209–18.

    Article  Google Scholar 

  265. Pombo A, Cuello P, Schul W, Yoon JB, Roeder RG, Cook PR, Murphy S (1998) EMBO J 17(6), 1768–78.

    Article  Google Scholar 

  266. Degani N and Pickholz D (1973) Radiation Botany 13(6), 381. DOI:10.1016/S0033-7560(73)90193--2

    Article  Google Scholar 

  267. Dietzel S, Zolghadr K, Hepperger C, Belmont AS (2004) J Cell Sci 117, 4603–4614.

    Article  Google Scholar 

  268. Warters RL, Lyons BW (1992) Radiat Res 130, 309–318.

    Article  Google Scholar 

  269. Begusova M, Gillard N, Sy D, Castaing B, Charlier M, Spotheim-Maurizo M (2005) Radiat Phys Chem 72, 265–270.

    Article  ADS  Google Scholar 

  270. Davidkova M, Stisová V, Goffinont S, Gillard N, Castaing B, Spotheim-Maurizot M (2006) Rad Protect Dosim 10, 1–6.

    Google Scholar 

  271. Haygarth K, Bartels DM (2010) J Phys Chem A 114(28), 7479–84.

    Article  Google Scholar 

  272. Burns WG (1989) Nature 339, 515–516. DOI:10.1038/339515c0

    Article  ADS  Google Scholar 

  273. Radulescu I, Elmroth K, Stenerlöw B (2004) Radiat Res 161(1), 1–8

    Article  Google Scholar 

  274. Newman HC, Prise KM, Michael BD (2000) Int J Radiat Biol 76(8), 1085–93.

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the IAA500040802 project of the Grant Agency of CR

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Falk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Falk, M., Lukasova, E., Kozubek, S. (2012). Repair of DNA Double-Strand Breaks. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics