Skip to main content

Track-Structure Monte Carlo Modelling in X-ray and Megavoltage Photon Radiotherapy

  • Chapter
  • First Online:
  • 1547 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The use of track structure calculations in radiotherapy using conventional low-LET radiation sources is discussed. Microdosimetry and emergent nanodosimetry methods are considered in explaining variations in quality factors associated with clinical practice and in vitro data. Transformation rate in the human derived for the in vitro system CGL1 is presented as a model for the induction of secondary cancer, a late effect associated with radiotherapy treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.J. Mijnheer, J.J. Battermann, A. Wambersie, Radiotherapy and Oncology, 8, 237–252 (1987)

    Article  Google Scholar 

  2. C. Lindborg, J.-E. Grindborg, Radiat. Prot. Dosim. 70, 541–6 (1997)

    Google Scholar 

  3. W. Friedland, P. Jacob, H.G. Paretzke, M. Merzagora, A. Ottolenghi, Radiat. Environ. Biophys. 38 39–47 (1999)

    Article  Google Scholar 

  4. H. Nikjoo, P. ONeill, W.E. Wilson, D.T. Goodhead, Radiat. Res. 156 577–83 (2001)

    Google Scholar 

  5. Y. Hsiao, R.D. Stewart, Phys. Med. Biol. 53, 233–244 (2008)

    Article  Google Scholar 

  6. A.M. Kellerer, H.H. Rossi, Radiat. Res. 75, 471–488 (1978)

    Article  Google Scholar 

  7. M. Zaider, Med. Phys. 25, 791–792 (1998)

    Article  Google Scholar 

  8. R.K. Sachs, D.J. Brenner, Med. Phys. 25, 2071–2073 (1998)

    Article  Google Scholar 

  9. M. Zaider, Med. Phys. 25, 2074–5 (1998)

    Article  Google Scholar 

  10. D.J. Brenner, M. Zaider, Med. Phys. 25, 1055–1057 (1998)

    Article  Google Scholar 

  11. P. Pihet, H.G. Menzel, Med. Phys. 26, 848–852 (1999)

    Article  Google Scholar 

  12. D.J. Brenner, C.-S. Leu, J.F. Beatty, R.E. Shefer, Phys. Med. Biol. 44, 323–333 (1999)

    Article  Google Scholar 

  13. M. Zaider, L. Hanin, Med. Phys. 38, 574–583 (2011)

    Article  Google Scholar 

  14. F. Verhaegen, I.A. Castellano, Radiat. Prot. Dosim. 99, 393–6 (2002)

    Google Scholar 

  15. B. Reniers, F. Verhaegen, Radiat. Prot. Dosim. 122, 401–3 (2007)

    Article  Google Scholar 

  16. H.H. Liu, F. Verhaegen, Radiat. Prot. Dosim. 99, 425–7 (2002)

    Google Scholar 

  17. D.J. Carlson, R.D. Stewart, X.A. Li, K. Jennings, J.Z. Wang, M. Guerrero, Phys. Med. Biol. 49, 4477–4491 (2004)

    Article  Google Scholar 

  18. R.D. Stewart, X.A. Li, Med. Phys. 34, 3739–3751 (2007)

    Article  Google Scholar 

  19. D.J. Brenner, Semin. Radiat. Oncol. 18, 234-239 (2008)

    Article  Google Scholar 

  20. J.P. Kirkpatrick, J.J. Meyer, L.B. Marks, Semin. Radiat. Oncol. 18, 240-243 (2008)

    Article  Google Scholar 

  21. H.T.Jr. Peterson, J. Radiol. Prot. 30, 801–811 (2010)

    Article  Google Scholar 

  22. G.J. Heyes, A.J. Mill, M.W. Charles, J. Radiol. Prot. 29, A123–A132 (2009)

    Google Scholar 

  23. N. Hunter, C.R. Muirhead, J. Radiol. Prot. 29, 5–21 (2009)

    Google Scholar 

  24. J.E. Pattison, L.C. Payne, R.P. Hugtenburg, A.H. Beddoe, M.W. Charles, Radiat. Prot. Dosim. 109, 175–180 (2004)

    Article  Google Scholar 

  25. J.E. Pattison, R.P. Hugtenburg, A.H. Beddoe, M.W. Charles, Radiat. Prot. Dosim. 95, 125–135 (2001)

    Google Scholar 

  26. L. Walsh, W. Rühm, A.M. Kellerer, Radiat. Environ. Biophys. 43, 145–151 (2004)

    Article  Google Scholar 

  27. D. Harder, N. Petoussi-Henß, D. Regulla, M. Zankl, G. Dietze, Radiat. Prot. Dosim. 109, 291–295 (2004)

    Article  Google Scholar 

  28. A.M. Kellerer, H. Roos, Radiat. Prot. Dosim. 113, 245–250 (2005)

    Article  Google Scholar 

  29. R.D. Stewart, W.E. Wilson, J.C. McDonald, D.J. Strom, Phys. Med. Biol. 47, 79–88 (2002)

    Article  Google Scholar 

  30. C.S. Liu, C.-J. Tung, Y.H. Hu, C.M. Chou, T.C. Chao, C.C. Lee, Nucl. Instrum. Meths. B. 267, 1823–9 (2009)

    Article  ADS  Google Scholar 

  31. T.C. Chao, Y.S. Huang, F.Y. Hsu, Y. Hsiao, C.C. Lee, C.J. Tung, Radiat. Prot. Dosim. 143, 248–252 (2011)

    Article  Google Scholar 

  32. R.P. Hugtenburg, Z. Chaoui, J.E. Pattison, Nucl Instrum. Meths. A 580, 157–160 (2007)

    Article  ADS  Google Scholar 

  33. R.P. Hugtenburg, Eu. J. Radiol. 68, S126–8 (2008)

    Article  Google Scholar 

  34. R.P. Hugtenburg, A.E.R. Baker, S. Green, Appl. Radiat. Isotop. 67, 433–5 (2009)

    Article  Google Scholar 

  35. R.P. Hugtenburg, A.E.R. Baker, S. Green, Appl. Radiat. Isotop. 67, S168-170 (2009)

    Article  Google Scholar 

  36. M. Zaider, D.J. Brenner, Radiat. Res. 103, 302–316 (1985)

    Article  Google Scholar 

  37. ICRU: Report 40. The quality factor in radiation protection. International Commission of Radiation Units and Measurements, Bethesda, MA, (1986)

    Google Scholar 

  38. R.J. Cannell, D.E. Watt, Phys. Med. Biol. 30, 255-258 (1985)

    Article  Google Scholar 

  39. A.V. Lappa, E.A. Bigildeev, D.S. Burmistrov, O.N. Vasilyev, Radiat. Environ. Biophys. 32, 1–19 (1993)

    Article  Google Scholar 

  40. E.A. Bigildeev, V. Michalik, Radiat. Phys. Chem. 47, 197–207 (1996)

    Article  ADS  Google Scholar 

  41. W. Friedland, M. Dingfelder, P. Jacob, H.G. Paretzke, Radiat. Phys. Chem. 72, 279–86 (2005)

    Article  ADS  Google Scholar 

  42. H.H. Rossi, M. Zaider, Microdosimetry and its applications, Springer-Verlag, Berlin (1996)

    Book  Google Scholar 

  43. A. Mozumder, Y. Hatano, (Eds.), Charged Particle and Photon Interactions with Matter. Chemical, Physicochemical and Biological Consequences with Applications, Marcel Dekker, New York, (2004)

    Google Scholar 

  44. G. Garty, S. Shchemelinin, A. Breskin, R. Chechik, G. Assaf, I. Orion, V. Bashkirov, R. Schulte, B. Grosswendt, B.: Nucl. Instrum. Meth. A, 492 212–235 (2002)

    Google Scholar 

  45. M.N. Cornforth, K.M. Greulich-Bode, B.D. Loucas, J. Arsuaga, M. Vázquez, Sachs, M. Brückner, M. Molls, P. Hahnfeldt, L. Hlatky, D.J. Brenner, J. Cell Biol. 159 237-244

    Google Scholar 

  46. H.H. Rossi, Radiation Protection Dosimetry 52, 9–12 (1994)

    Google Scholar 

Download references

Acknowledgements

Frank Verhaegen is acknowledged for providing his thesis and the basic data on lineal energy spectra therein. Geoff Heyes, Alan Beddoe and Ihsan Al Affan are thanked for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Hugtenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hugtenburg, R.P. (2012). Track-Structure Monte Carlo Modelling in X-ray and Megavoltage Photon Radiotherapy. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics