Skip to main content

Energy Loss of Swift Protons in Liquid Water: Role of Optical Data Input and Extension Algorithms

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Abstract

A short review of the dielectric approach used to describe the energy deposited in liquid water by swift proton beams is presented. Due to the essential role played by the electronic excitation spectrum of the target, characterized by its energy loss function (ELF), we discuss in detail the procedure to obtain a reliable ELF from experimental optical data, which corresponds to zero momentum transfer. We also analyse the influence of the different methods used to extend this optical ELF to non-zero momentum transfers. From these different methods we calculate the stopping power and energy loss straggling of liquid water for proton beams, comparing them with other data available in the literature. In general, a good agreement is found at high projectile incident energy, but differences appear at energies around and lower than the maximum in the stopping power. Finally, the energy delivered to the target as a function of the depth (i.e., the depth-dose distribution) is obtained by means of a simulation code that takes into account the main interactions of the projectile with the target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson R. R., Radiology 47, 487–491 (1946)

    Google Scholar 

  2. Tobias C. A., Lawrence J. H., Born J. L., McCombs R. K., Roberts J. E., Anger H. O., Low-Beer B. V. A., Huggings C. B., Cancer Research 18, 121–134 (1958)

    Google Scholar 

  3. Sisterson J., Nuclear Instruments and Methods in Physics Research B 241, 713–716 (2005)

    Article  ADS  Google Scholar 

  4. Nikjoo H., Uehara S., Emfietzoglou D., Brahme A., New Journal of Physics 10, 075006-1–075006-28 (2008)

    Google Scholar 

  5. Solov’yov A. V., Surdutovich E., Scifoni E., Mishustin I., Greiner W., Physical Review E 79, 011909-1–011909-7 (2009)

    Google Scholar 

  6. Inokuti M., Reviews of Modern Physics 43, 297–347 (1971); Addenda, Reviews of Modern Physics 50, 23–35 (1978)

    Article  ADS  Google Scholar 

  7. ICRU Report 49, Stopping Powers and Ranges for Protons and Alpha Particles (International Commission on Radiation Units and Measurements, Bethesda, Maryland, 1992)

    Google Scholar 

  8. Uehara S., Toburen L. H., Wilson W. E., Goodhead D. T., Nikjoo H., Radiation Physics and Chemistry 59, 1–11 (2000)

    Article  ADS  Google Scholar 

  9. Dingfelder M., Inokuti M., Paretzke H. G., Radiation Physics and Chemistry 59, 255–275 (2000)

    Article  ADS  Google Scholar 

  10. Date H., Sutherland K. L., Hayashi T., Matsuzaki Y., Kiyanagi Y., Radiation Physics and Chemistry 75, 179–187 (2006)

    Article  ADS  Google Scholar 

  11. Fermi E., Physical Review 57, 485–493 (1940)

    Article  ADS  Google Scholar 

  12. Lindhard J., Det Kongelige Danske Videnskabernes Selskab. Matematisk-fysiske Meddelelser 28 (8) (1954)

    Google Scholar 

  13. Ritchie R. H., Physical Review 106, 874–881 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ritchie R. H., Physical Review 114, 644–654 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Heller J. M., Hamm R. N., Birkhoff R. D., Painter L. R., Journal of Chemical Physics 60, 3483–3486 (1974)

    Article  ADS  Google Scholar 

  16. Hayashi H., Watanabe N., Udagawa Y., Kao C. C., Proceedings of the National Academy of Sciences of the USA 97, 6264–6266 (2000)

    Article  ADS  Google Scholar 

  17. Ritchie R. H., Howie A., Philosophical Magazine 36, 463–481 (1977)

    Article  ADS  Google Scholar 

  18. Ashley J. C., Journal of Electron Spectroscopy and Related Phenomena 46, 199–214 (1988)

    Article  Google Scholar 

  19. Abril I., Garcia-Molina R., Denton C. D., Pérez-Pérez J. F., Arista N., Physical Review A 58, 357–366 (1998)

    Article  ADS  Google Scholar 

  20. Emfietzoglou D., Cucinotta F. A., Nikjoo H., Radiation Research 164, 202–211 (2005)

    Article  Google Scholar 

  21. Dingfelder M., Ritchie R. H., Turner J. E., Friedland W., Paretzke H. G., Hamm R. N., Radiation Research 169, 584–594 (2008)

    Article  Google Scholar 

  22. Heredia-Avalos S., Garcia-Molina R., Fernández-Varea J. M., Abril I., Physical Review A 72, 052902-1-052902-9 (2005)

    Google Scholar 

  23. Sigmund P., Particle penetration and radiation effects. General aspects and stopping of swift point charges (Springer-Verlag, Berlin, 2006)

    Google Scholar 

  24. Pines D., Elementary excitations in solids, 2nd printing (Benjamin, New York, 1964)

    Google Scholar 

  25. Schiwietz G., Grande P. L., Nuclear Instruments and Methods in Physics Research B 175–177, 125–131 (2001)

    Article  Google Scholar 

  26. Brandt W., Kitagawa M., Physical Review B 25, 5631–5637 (1982); corrections to the BK model appear in Brandt W., Nuclear Instruments and Methods in Physics Research 194, 13–19 (1982)

    Google Scholar 

  27. Garcia-Molina R., Abril I., Denton C. D., Heredia-Avalos S., Nuclear Instruments and Methods in Physics Research B 249, 6–12 (2006)

    Article  ADS  Google Scholar 

  28. Sigmund P., Nuclear Instruments and Methods in Physics Research B 85, 541–550 (1994)

    Article  ADS  Google Scholar 

  29. Sigmund P., Nuclear Instruments and Methods in Physics Research B 135, 1–15 (1998)

    Article  ADS  Google Scholar 

  30. Segui S., Dingfelder M., Fernández-Varea J. M., Salvat F., Journal of Physics B: Atomic, Molecular and Optical Physics 35, 33–53 (2002)

    Article  Google Scholar 

  31. Daniels J., Optics Communications 3, 240–243 (1971)

    Article  ADS  Google Scholar 

  32. Seki M., Kobayashi K., Nakahara J., Journal of the Physical Society of Japan 50, 2643–2648 (1981)

    Article  ADS  Google Scholar 

  33. Warren S. G., Applied Optics 23, 1206–1255 (1984)

    Article  ADS  Google Scholar 

  34. Toburen L. H., McLawhorn S. L., McLawhorn R. A., Carnes K. D., Dingfelder M., Shinpaugh J. L., Radiation Research 174, 107–118 (2010)

    Article  Google Scholar 

  35. Egerton R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1989)

    Google Scholar 

  36. Fano U., Annual Reviews of Nuclear Science 13, 1–66 (1963)

    Article  ADS  Google Scholar 

  37. Dressel M., Grüner G., Electrodynamics of Solids. Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  38. Tanuma S., Powell C. J., Penn D. R., Journal of Electron Spectroscopy and Related Phenomena 62, 95–109 (1993)

    Article  Google Scholar 

  39. Smith D. Y., Inokuti M., Karstens W., Shiles E., Nuclear Instruments and Methods in Physics Research B 259, 1–5 (2006)

    Article  ADS  Google Scholar 

  40. Chantler C. T., Olsen K., Dragoset R. A., Kishore A. R., Kotochigova S. A., Zucker D. S., X-ray form factor, attenuation and scattering tables (version 2.1). National Institute of Standards and Technology, Gaithersburg, MD, 2005. Available at http://www.nist.gov/pml/ffast/index.cfm

  41. Henke B. L., Gullikson E. M., Davis J. C., Atomic Data and Nuclear Data Tables 54, 181–342 (1993)

    Article  ADS  Google Scholar 

  42. Watanabe N., Hayashi H., Udagawa Y., Bulletin of the Chemical Society of Japan 70, 719–726 (1997)

    Article  Google Scholar 

  43. Hayashi H., Watanabe N., Udagawa Y., Kao C.-C., Journal of Chemical Physics 108, 823–825 (1998)

    Article  ADS  Google Scholar 

  44. Fernández-Varea J. M., Mayol R., Salvat F., Liljequist D., Journal of Physics: Condensed Matter 4, 2879–2890 (1992)

    Article  ADS  Google Scholar 

  45. Fernández-Varea J. M., Mayol R., Liljequist D., Salvat F., Journal of Physics: Condensed Matter 5, 3593–3610 (1993)

    Article  ADS  Google Scholar 

  46. Dingfelder M., Inokuti M., Radiation and Environmental Biophysics 38, 93–96 (1999)

    Article  Google Scholar 

  47. Planes D. J., Garcia-Molina R., Abril I., Arista N. R., Journal of Electron Spectroscopy and Related Phenomema 82, 23–29 (1996)

    Article  Google Scholar 

  48. Ding Z.-J., Shimizu R., Surface Science 222, 313–331 (1989)

    Article  ADS  Google Scholar 

  49. Ding Z. J., Shimizu R., Scanning 18, 92–113 (1996)

    Article  Google Scholar 

  50. Kuhr J.-Ch., Fitting H.-J., Journal of Electron Spectroscopy and Related Phenomena 105, 257–273 (1999)

    Article  Google Scholar 

  51. Watanabe N., Hayashi H., Udagawa Y., Journal of Physics and Chemistry of Solids 61, 407–409 (2000)

    Article  ADS  Google Scholar 

  52. Abril I., Denton C. D., de Vera P., Kyriakou I., Emfietzoglou D., Garcia-Molina R., Nuclear Instruments and Methods in Physics Research B 268, 1763–1767 (2010)

    Article  ADS  Google Scholar 

  53. Mahan G. D., Many-Particle Physics, 3rd ed. (Kluwer Academic-Plenum Publishers, New York, 2000)

    Google Scholar 

  54. Penn D. R., Physical Review B 35, 482–486 (1987)

    Article  ADS  Google Scholar 

  55. Sturm K., Advances in Physics 31, 1–64 (1982)

    Article  ADS  Google Scholar 

  56. Mermin N. D., Physical Review B 1, 2362–2363 (1970)

    Article  ADS  Google Scholar 

  57. Moreno-Marín J. C., Abril I., Garcia-Molina R., Nuclear Instruments and Methods in Physics Research B 193, 30–35 (2002)

    Article  ADS  Google Scholar 

  58. Behar M., Fadanelli R. C., Abril I., Garcia-Molina R., Denton C. D., Nagamine L. C. C. M., Arista N. R., Physical Review A 80, 062901-1–062901-8 (2009)

    Google Scholar 

  59. Behar M., Denton C. D., Fadanelli R. C., Abril I., Cantero E. D., Garcia-Molina R., Nagamine L. C. C. M., European Physical Journal D 59, 209–213 (2010)

    Article  ADS  Google Scholar 

  60. Emfietzoglou D., Abril I., Garcia-Molina R., Petsalakis I. D., Nikjoo H., Kyriakou I., Pathak A., Nuclear Instruments and Methods in Physics Research B 266, 1154–1161 (2008)

    Article  ADS  Google Scholar 

  61. Garcia-Molina R., Abril I., Denton C. D., Heredia-Avalos S., Kyriakou I., Emfietzoglou D., Nuclear Instruments and Methods in Physics Research B 267, 2647–2652 (2009)

    Article  ADS  Google Scholar 

  62. Abril I., Garcia-Molina R., Denton C. D., Kyriakou I., Emfietzoglou D., Radiation Research 175, 247–255 (2011)

    Article  Google Scholar 

  63. Tirao G., Stutz G., Silkin V. M., Chulkov E. V., Cusatis C., Journal of Physics: Condensed Matter 19, 046207-1–046207-11 (2007)

    Google Scholar 

  64. Emfietzoglou D., Garcia-Molina R., Kyriakou I., Abril I., Nikjoo H., Physics in Medicine and Biology 54, 3451–3472 (2009)

    Article  ADS  Google Scholar 

  65. Akkerman A., Breskin A., Chechik R., Lifshitz Y., Radiation Physics and Chemistry 61, 333–335 (2001)

    Article  ADS  Google Scholar 

  66. Ziegler J. F., Biersack J. P., Ziegler M. D., SRIM. The Stopping and Range of Ions in Matter, (SRIM Co., Chester, Maryland, 2008)

    Google Scholar 

  67. Wenzel W. A., Whaling W., Physical Review 87, 499–503 (1952)

    Article  ADS  Google Scholar 

  68. Andrews D. A., Newton G., Journal of Physics D: Applied Physics 10, 845–850 (1977)

    Article  ADS  Google Scholar 

  69. Bauer P., Kaferbock W., Necas V., Nuclear Instruments and Methods in Physics Research B 93, 132–136 (1994)

    Article  ADS  Google Scholar 

  70. Shimizu M., Kaneda M., Hayakawa T., Tsuchida H., Itoh A., Nuclear Instruments and Methods in Physics Research B 267, 2667–2670 (2009)

    Article  ADS  Google Scholar 

  71. Shimizu M., Hayakawa T., Kaneda M., Tsuchida H., Itoh A., Vacuum 84, 1002–1004 (2010)

    Article  Google Scholar 

  72. Liamsuwan T., Uehara S., Emfietzoglou D., Nikjoo H., International Journal of Radiation Biology 87, 141–160 (2011)

    Article  Google Scholar 

  73. Garcia-Molina R., Denton C. D., Abril I., Arista N. R., Physical Review A 62, 012901-1–012901-5 (2000)

    Google Scholar 

  74. Heredia-Avalos S., Garcia-Molina R., Abril I., Physical Review A 76, 012901-1–012901-12 (2007)

    Google Scholar 

  75. Garcia-Molina R., Abril I., Heredia-Avalos S., Kyriakou I., Emfietzoglou D., Physics in Medicine and Biology 56, 6475–6493 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

R.G.M. and I.A. acknowledge financial support from the Spanish Ministerio de Ciencia e Innovación (Project FIS2010-17225). Financial support for I.K. and D.E. by the European Union FP7 ANTICARB (HEALTH-F2-2008-201587) is recognized. This work has benefited from the collaboration within COST Action MP 1002, Nanoscale Insights into Ion Beam Cancer Therapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Garcia-Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Garcia-Molina, R., Abril, I., Kyriakou, I., Emfietzoglou, D. (2012). Energy Loss of Swift Protons in Liquid Water: Role of Optical Data Input and Extension Algorithms. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics