Skip to main content

Theory and Calculation of Stopping Cross Sections of Nucleobases for Swift Ions

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Abstract

The effects of energy transfer from swift ion radiation to molecules are best described by the stopping cross section of the target for the projectile ion. In turn, the mean excitation energy of the target is the determining factor in the stopping cross section. Using polarization propagator methodology, the mean excitation energies of the five DNA nucleobases have been calculated, and subsequently used to determine the stopping cross sections of the bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For details of the scheme, see (17)

  2. 2.

    The orbital exponents and contraction coefficients for the basis are given in Tables 2–5 of Ref. (24)

References

  1. C. von Sonntag, The Chemical Basis for Radiation Biology, Taylor and Francis, London (1987)

    Google Scholar 

  2. C. von Sonntag, Free-radical DNA damage and its repair - a chemical perspective, Springer Verlag, Heidelberg (2005)

    Google Scholar 

  3. For a general review of the theory see: M. Inokuti, Rev. Mod. Phys. 43, 297 (1971); J.F. Ziegler, J. Appl. Phys./Rev. Appl. Phys. 85, 1249 (1999)

    Google Scholar 

  4. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids. Vol. 1 of the Stopping and Ranges of Ions in Matter, Pergamon Press, Oxford (1985)

    Google Scholar 

  5. J.F. Janni, At. Data Nuc. Data Tables 27, 150 (1982)

    ADS  Google Scholar 

  6. E. Bonderup, Penetration of Charged Particles through Matter, 2nd edition, University of Århus, Århus (1981)

    Google Scholar 

  7. H. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930)

    MATH  ADS  Google Scholar 

  8. F. Bloch, Ann. Phys. (Leipzig) 16, 285 (1933)

    ADS  Google Scholar 

  9. U. Fano, Ann. Rev. Nucl. Sci. 13, 67 (1963)

    Article  Google Scholar 

  10. Cf. e.g. M.C. Walske, Phys. Rev. 88, 1283 (1952); ibid. 101, 940 (1956); E. Bonderup, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 35, No. 17 (1967); G.S. Khandelwal, Nuc. Phys. A 116, 97 (1968), J. Oddershede, J.R. Sabin, At. Data Nuc. Data Tables 31, 275 (1984)

    Google Scholar 

  11. J.R. Sabin, J. Oddershede, Int. J. Quantum Chem 109, 2933 (2009)

    Article  ADS  Google Scholar 

  12. J.R. Sabin, J. Oddershede, Nucl. Inst. Methods B 27, 280 (1987); J. Oddershede, J.R. Sabin, Nucl. Inst. Methods B 42, 7 (1989)

    Google Scholar 

  13. S. Bruun-Ghalbia, S.P.A. Sauer, J. Oddershede, J.R. Sabin, J. Phys. Chem. B 114, 633 (2010).

    Article  Google Scholar 

  14. S.P.A. Sauer, J. Oddershede, J.R. Sabin, J. Phys. Chem. C 114, 20335 (2010)

    Article  Google Scholar 

  15. J.C. Ashley, R.H. Ritchie, W. Brandt, Phys. Rev. B 5, 2393 (1972); ibid. Phys. Rev. A 8, 2404 (1973)

    Google Scholar 

  16. J. Lindhard, Nucl. Inst. Methods 132, 1 (1976)

    Article  ADS  Google Scholar 

  17. For a review of the theory and implementation of the polarization propagator method, see J. Oddershede, P. Jørgensen, D.L.Yaeger, Compt. Phys. Rep. 2, 3 (1984); J. Oddershede, Adv. Chem. Phys. 69, 201(1987); S.P.A. Sauer, Molecular Electromagnetism: A Computational Chemistry Approach, Oxford University Press, Oxford, 2011, Chapters 2 & 10

    Google Scholar 

  18. J. Geertsen, J. Oddershede, J.R. Sabin, Phys. Rev. A 34, 1104 (1986)

    Article  ADS  Google Scholar 

  19. P. Jørgensen, J. Oddershede, N.H.F. Beebe, J. Chem. Phys. 68, 2527 (1978)

    Article  ADS  Google Scholar 

  20. S.P.A. Sauer, G.H.F. Diercksen, J. Oddershede, Int. J. Quantum Chem. 39, 667 (1991)

    Article  Google Scholar 

  21. S. Bruun-Ghalbia, S.P.A. Sauer, J. Oddershede, J.R. Sabin, Eur. Phys. J. D 60, 71 (2010)

    Article  ADS  Google Scholar 

  22. J. Oddershede, J.R. Sabin, Phys. Rev. A 39, 5565 (1989)

    Article  ADS  Google Scholar 

  23. S.P.A. Sauer, J.R. Sabin, J. Oddershede, Nucl. Inst. Methods B 100, 458 (1995)

    Article  ADS  Google Scholar 

  24. S.P.A. Sauer, J. Oddershede, J.R. Sabin, J. Phys. Chem A 110, 8811 (2006)

    Article  Google Scholar 

  25. A.D. McLachlan, M.A. Ball, Rev. Mod. Phys. 36, 844 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.D. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  ADS  Google Scholar 

  27. Aa. E. Hansen, T.D. Bouman, Mol. Phys. 37, 1713 (1979)

    Google Scholar 

  28. K. Aidas, J. Kongsted, J.R. Sabin, J. Oddershede, K.V. Mikkelsen, S.P.A. Sauer, J. Phys. Chem. Lett. 1, 242 (2010)

    Article  Google Scholar 

  29. W. Thomas, Naturwiss. 13, 627 (1925)

    Article  ADS  Google Scholar 

  30. W.Z. Kuhn, Phys. 33, 408 (1925)

    Article  Google Scholar 

  31. F. Reiche, F., W. Thomas, Z. Phys. 34, 510 (1925)

    Google Scholar 

  32. R.A. Harris, J. Chem. Phys. 50, 3947 (1969)

    Article  ADS  Google Scholar 

  33. P. Jørgensen, J. Oddershede, J. Chem Phys. 78, 1898 (1983).

    Article  ADS  Google Scholar 

  34. J. Oddershede, J.R. Sabin, At. Data Nuc. Data Tables 31, 275 (1984)

    Article  ADS  Google Scholar 

  35. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988); A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Google Scholar 

  36. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257(1972); T. Clark, J. Chandrasekhar, P. Schleyer, J. Comp. Chem. 4, 294 (1983)

    Google Scholar 

  37. M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, J. Chem. Phys. 128, 134110 (2008)

    Article  ADS  Google Scholar 

  38. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 162, 165 (1989); M. Häser, R. Ahlrichs, J. Comput. Chem., 10, 104 (1989); O. Treutler, R. Ahlrichs, J. Chem. Phys. 102, 346 (1995); R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996); S. Grimme, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 361, 321 (2002); F. Furche, D. Rappoport, Computational Photochemistry. In Computational, Theoretical Chemistry; M. Olivucci, Ed.; Elsevier: Amsterdam, 2005; Vol. 16; Chapter 3; M.v.Arnim, R. Ahlrichs, J. Chem. Phys. 111, 9183 (1999)

    Google Scholar 

  39. TURBOMOLE V6.0 2009, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com

  40. S.P.A. Sauer, J.R. Sabin, J. Oddershede, Phys. Rev. A 47, 1123 (1993)

    Article  ADS  Google Scholar 

  41. J.R. Sabin, R. Cabrera-Trujillo, Y. Öhrn, E. Deumens, J. Phys.: Conf. Series 101, 012009 (2008)

    Google Scholar 

  42. J.R. Sabin, R. Cabrera-Trujillo, N. Stolterfoht, E. Deumens, Y. Öhrn, Nucl. Inst. Methods B 267, 196 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Center for Scientific Computing (DCSC), the Carlsberg Foundation and the Danish Natural Science Research Council/The Danish Councils for Independent Research (Grant No. 272-08-0486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Sabin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sauer, S.P.A., Oddershede, J., Sabin, J.R. (2012). Theory and Calculation of Stopping Cross Sections of Nucleobases for Swift Ions. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics