Skip to main content

Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae

  • Chapter
  • First Online:
Aging Research in Yeast

Abstract

Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic building blocks, while at the same time removing damaged cellular components such as mitochondria and other organelles. Regulation of amino acid homeostasis and autophagy is accomplished by a complex web of pathways that interact because of the functional overlap at the level of recycling. It is becoming increasingly clear that amino acid homeostasis and autophagy play important roles in chronological longevity in yeast and higher organisms. Our goal in this chapter is to focus on mechanisms and pathways that link amino acid homeostasis, autophagy, and chronological longevity in yeast, and explore their relevance to aging and longevity in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCAA:

branched side-chain amino acids

CLS:

chronological life span

CR:

calorie restriction

GAAC:

general amino acid control

ISC:

iron sulfur cluster

NCR:

nitrogen catabolite repression

ROS:

reactive oxygen species

TOR:

target of rapamycin

References

  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    PubMed  CAS  Google Scholar 

  • Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA, Jr, Aris JP (2009) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8:353–369

    PubMed  CAS  Google Scholar 

  • Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Andrews ZB (2010) Uncoupling protein-2 and the potential link between metabolism and longevity. Curr Aging Sci 3:102–112

    PubMed  CAS  Google Scholar 

  • Aragon AD, Rodriguez AL, Meirelles O, Roy S, Davidson GS, Tapia PH, Allen C, Joe R, Benn D, Werner-Washburne M (2008) Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol Biol Cell 19:1271–1280

    PubMed  CAS  Google Scholar 

  • Attardi G (2002) Role of mitochondrial DNA in human aging. Mitochondrion 2:27–37

    PubMed  CAS  Google Scholar 

  • Ayala V, Naudi A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol A Biol Sci Med Sci 62:352–360

    PubMed  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844

    PubMed  CAS  Google Scholar 

  • Boer VM, Amini S, Botstein D (2008) Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc Natl Acad Sci USA 105:6930–6935

    PubMed  CAS  Google Scholar 

  • Boer VM, Daran JM, Almering MJ, de Winde JH, Pronk JT (2005) Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Res 5:885–897

    PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5:265–277

    PubMed  CAS  Google Scholar 

  • Bonawitz ND, Rodeheffer MS, Shadel GS (2006) Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26:4818–4829

    PubMed  CAS  Google Scholar 

  • Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166:765–777

    PubMed  CAS  Google Scholar 

  • Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367

    PubMed  CAS  Google Scholar 

  • Brauer MJ, Saldanha AJ, Dolinski K, Botstein D (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16:2503–2517

    PubMed  CAS  Google Scholar 

  • Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270

    PubMed  CAS  Google Scholar 

  • Buschlen S, Amillet JM, Guiard B, Fournier A, Marcireau C, Bolotin-Fukuhara M (2003) The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp Funct Genomics 4:37–46

    PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    PubMed  CAS  Google Scholar 

  • Chen Q, Ding Q, Keller JN (2005) The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration. Biogerontology 6:1–13

    PubMed  CAS  Google Scholar 

  • Chen Q, Thorpe J, Ding Q, El-Amouri IS, Keller JN (2004) Proteasome synthesis and assembly are required for survival during stationary phase. Free Radic Biol Med 37:859–868

    PubMed  CAS  Google Scholar 

  • Cheng C, Fabrizio P, Ge H, Wei M, Longo VD, Li LM (2007) Significant and systematic expression differentiation in long-lived yeast strains. PLoS One 2:e1095

    PubMed  Google Scholar 

  • Cuervo AM (2008a) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612

    PubMed  CAS  Google Scholar 

  • Cuervo AM (2008b) Calorie restriction and aging: the ultimate “cleansing diet”. J Gerontol A Biol Sci Med Sci 63:547–549

    PubMed  Google Scholar 

  • Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    PubMed  CAS  Google Scholar 

  • Cyrne L, Martins L, Fernandes L, Marinho HS (2003) Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med 34:385–393

    PubMed  CAS  Google Scholar 

  • Davidson GS, Joe RM, Roy S, Meirelles O, Allen CP, Wilson MR, Tapia PH, Manzanilla EE, Dodson AE, Chakraborty S, Carter M, Young S, Edwards B, Sklar L, Werner-Washburne M (2011) The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 22:988–998

    PubMed  CAS  Google Scholar 

  • De Virgilio C, Loewith R (2006a) Cell growth control: little eukaryotes make big contributions. Oncogene 25:6392–6415

    PubMed  Google Scholar 

  • De Virgilio C, Loewith R (2006b) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    PubMed  Google Scholar 

  • Del Roso A, Vittorini S, Cavallini G, Donati A, Gori Z, Masini M, Pollera M, Bergamini E (2003) Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol 38:519–527

    PubMed  CAS  Google Scholar 

  • Dietrich MO, Horvath TL (2010) The role of mitochondrial uncoupling proteins in lifespan. Pflugers Arch 459:269–275

    PubMed  CAS  Google Scholar 

  • Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, Jiang J, Chinkes DL, Urban RJ (2009) Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab 94:1630–1637

    PubMed  CAS  Google Scholar 

  • Doudican NA, Song B, Shadel GS, Doetsch PW (2005) Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol 25:5196–5204

    PubMed  CAS  Google Scholar 

  • Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11:222–226

    PubMed  CAS  Google Scholar 

  • Dumlao DS, Hertz N, Clarke S (2008) Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae. Biochemistry 47:698–709

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo VD (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6:e1001024

    PubMed  Google Scholar 

  • Fabrizio P, Liou LL, Moy VN, Diaspro A, SelverstoneValentine J, Gralla EB, Longo VD (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163:35–46

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    PubMed  CAS  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span – from yeast to humans. Science 328:321–326

    PubMed  CAS  Google Scholar 

  • Garrido EO, Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43:993–1003

    PubMed  CAS  Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    PubMed  CAS  Google Scholar 

  • Gomes P, Sampaio-Marques B, Ludovico P, Rodrigues F, Leao C (2007) Low auxotrophy-complementing amino acid concentrations reduce yeast chronological life span. Mech Ageing Dev 128:383–391

    PubMed  CAS  Google Scholar 

  • Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    PubMed  CAS  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206

    PubMed  CAS  Google Scholar 

  • Guarente L (2008) Mitochondria – a nexus for aging, calorie restriction, and sirtuins? Cell 132:171–176

    PubMed  CAS  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    PubMed  CAS  Google Scholar 

  • Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5:557–561

    PubMed  CAS  Google Scholar 

  • Harris N, Bachler M, Costa V, Mollapour M, Moradas-Ferreira P, Piper PW (2005) Overexpressed Sod1p acts either to reduce or to increase the lifespans and stress resistance of yeast, depending on whether it is Cu(2+)-deficient or an active Cu,Zn-superoxide dismutase. Aging Cell 4:41–52

    PubMed  CAS  Google Scholar 

  • Harris N, Costa V, MacLean M, Mollapour M, Moradas-Ferreira P, Piper PW (2003) Mnsod overexpression extends the yeast chronological (G0) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34:1599–1606

    PubMed  CAS  Google Scholar 

  • Hartwell LH (1974) Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38:164–198

    PubMed  CAS  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    PubMed  CAS  Google Scholar 

  • Henderson ST, Bonafe M, Johnson TE (2006) daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci 61:444–460

    PubMed  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    PubMed  CAS  Google Scholar 

  • Herman PK (2002). Stationary phase in yeast. Curr Opin Microbiol 5:602–607

    PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    PubMed  CAS  Google Scholar 

  • Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35–73

    PubMed  CAS  Google Scholar 

  • Hu Y, Cooper TG, Kohlhaw GB (1995) The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol Cell Biol 15:52–57

    PubMed  CAS  Google Scholar 

  • Hubbard VM, Valdor R, Macian F, Cuervo AM (2011) Selective autophagy in the maintenance of cellular homeostasis in aging organisms. Biogerontology. doi:10.1007/s10522-011-9331-x

    Google Scholar 

  • Jazwinski SM (2005) Rtg2 protein: at the nexus of yeast longevity and aging. FEMS Yeast Res 5:1253–1259

    PubMed  CAS  Google Scholar 

  • Jones EW, Fink GR (1982) Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces metabolism and gene expression, pp 181–299. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY

    Google Scholar 

  • Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464:513–519

    PubMed  CAS  Google Scholar 

  • Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    PubMed  CAS  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    PubMed  CAS  Google Scholar 

  • Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15

    PubMed  CAS  Google Scholar 

  • Kolkman A, Daran-Lapujade P, Fullaondo A, Olsthoorn MM, Pronk JT, Slijper M, Heck AJ (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:2006 0026

    PubMed  Google Scholar 

  • Kundu M, Thompson CB (2005) Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 12(Suppl 2):1484–1489

    PubMed  CAS  Google Scholar 

  • Lapointe J, Hekimi S (2010) When a theory of aging ages badly. Cell Mol Life Sci 67:1–8

    PubMed  CAS  Google Scholar 

  • Laun P, Heeren G, Rinnerthaler M, Rid R, Kossler S, Koller L, Breitenbach M (2008) Senescence and apoptosis in yeast mother cell-specific aging and in higher cells: a short review. Biochim Biophys Acta 1783:1328–1334

    PubMed  CAS  Google Scholar 

  • Layman DK (2003) The role of leucine in weight loss diets and glucose homeostasis. J Nutr 133:261S–267S

    PubMed  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    PubMed  CAS  Google Scholar 

  • Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137

    PubMed  CAS  Google Scholar 

  • Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144:967–978

    PubMed  CAS  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    PubMed  CAS  Google Scholar 

  • Longo VD (2004) Ras: the other pro-aging pathway. Sci Aging Knowledge Environ 2004:pe36.

    Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280

    PubMed  CAS  Google Scholar 

  • Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131–142

    PubMed  CAS  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Opinion: programmed and altruistic ageing. Nat Rev Genet 6:866–872

    PubMed  CAS  Google Scholar 

  • Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12:842–846

    PubMed  CAS  Google Scholar 

  • Mair W, Piper MD, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223

    PubMed  Google Scholar 

  • Mascarenhas C, Edwards-Ingram LC, Zeef L, Shenton D, Ashe MP, Grant CM (2008) Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mol Biol Cell 19:2995–3007

    PubMed  CAS  Google Scholar 

  • Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6:e1000921

    PubMed  Google Scholar 

  • McLarney MJ, Pellett PL, Young VR (1996) Pattern of amino acid requirements in humans: an interspecies comparison using published amino acid requirement recommendations. J Nutr 126:1871–1882

    PubMed  CAS  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    PubMed  CAS  Google Scholar 

  • Merry BJ (2004) Oxidative stress and mitochondrial function with aging – the effects of calorie restriction. Aging Cell 3:7–12

    PubMed  CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    PubMed  CAS  Google Scholar 

  • Millward DJ, Layman DK, Tome D, Schaafsma G (2008) Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 87:1576S–1581S

    PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    PubMed  CAS  Google Scholar 

  • Mortimer RK, Johnson JR (1959) Life spans of individual yeast cells. Nature 183:1751–1752

    PubMed  CAS  Google Scholar 

  • Müller I, Zimmermann M, Becker D, Flomer M (1980) Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech Ageing Dev 12:47–52

    PubMed  Google Scholar 

  • Murin R, Hamprecht B (2008) Metabolic and regulatory roles of leucine in neural cells. Neurochem Res 33:279–284

    PubMed  CAS  Google Scholar 

  • Nair U, Klionsky DJ (2005) Molecular mechanisms and regulation of specific and nonspecific autophagy pathways in yeast. J Biol Chem 280:41785–41788

    PubMed  CAS  Google Scholar 

  • Naudi A, Caro P, Jove M, Gomez J, Boada J, Ayala V, Portero-Otin M, Barja G, Pamplona R (2007) Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain. Rejuvenation Res 10:473–484

    PubMed  Google Scholar 

  • Neiman AM (2005) Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:565–584

    PubMed  CAS  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    PubMed  CAS  Google Scholar 

  • Oliveira GA, Tahara EB, GombertAK, BarrosMH, Kowaltowski AJ (2008) Increased aerobic metabolism is essential for the beneficial effects of caloric restriction on yeast life span. J Bioenerg Biomembr 40:381–388

    PubMed  CAS  Google Scholar 

  • Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280:31582–31586

    PubMed  CAS  Google Scholar 

  • Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine ingestion by rats extends life span. J Nutr 123:269–274

    PubMed  CAS  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    PubMed  CAS  Google Scholar 

  • Parrella E, Longo VD (2010) Insulin/IGF-I and related signaling pathways regulate aging in nondividing cells: from yeast to the mammalian brain. Scient World J 10:161–177

    CAS  Google Scholar 

  • Pencharz PB, Ball RO (2003) Different approaches to define individual amino acid requirements. Annu Rev Nutr 23:101–116

    PubMed  CAS  Google Scholar 

  • Piper MD, Bartke A (2008) Diet and aging. Cell Metab 8:99–104

    PubMed  CAS  Google Scholar 

  • Piper MD, Mair W, Partridge L (2005) Counting the calories: the role of specific nutrients in extension of life span by food restriction. J Gerontol A Biol Sci Med Sci 60:549–555

    PubMed  Google Scholar 

  • Piper PW (2006) Long-lived yeast as a model for ageing research. Yeast 23:215–226

    PubMed  CAS  Google Scholar 

  • Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127:733–740

    PubMed  Google Scholar 

  • Powers RW, III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184

    PubMed  CAS  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    PubMed  CAS  Google Scholar 

  • Saldanha AJ, Brauer MJ, Botstein D (2004) Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15:4089–4104

    PubMed  CAS  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    PubMed  CAS  Google Scholar 

  • Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002

    PubMed  CAS  Google Scholar 

  • Smith ED, Kennedy BK, Kaeberlein M (2007) Genome-wide identification of conserved longevity genes in yeast and worms. Mech Ageing Dev 128:106–111

    PubMed  CAS  Google Scholar 

  • Soeters PB, van de Poll MC, van Gemert WG, Dejong CH (2004) Amino acid adequacy in pathophysiological states. J Nutr 134:1575S–1582S

    PubMed  CAS  Google Scholar 

  • Srinivasan V, Kriete A, Sacan A, Jazwinski SM (2010) Comparing the yeast retrograde response and NF-kappaB stress responses: implications for aging. Aging Cell 9:933–941

    PubMed  CAS  Google Scholar 

  • Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074

    PubMed  CAS  Google Scholar 

  • Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133:292–302

    PubMed  CAS  Google Scholar 

  • Styles C (2002) How to set up a yeast laboratory. Methods Enzymol 350:42–71

    PubMed  Google Scholar 

  • Tang L, Liu X, Clarke ND (2006) Inferring direct regulatory targets from expression and genome location analyses: a comparison of transcription factor deletion and overexpression. BMC Genomics 7:215

    PubMed  Google Scholar 

  • Tate JJ, Georis I, Feller A, Dubois E, Cooper TG (2009) Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently. J Biol Chem 284:2522–2534

    PubMed  CAS  Google Scholar 

  • Terman A, Gustafsson B, Brunk UT (2006) The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem-Biol Interact 163:29–37

    PubMed  CAS  Google Scholar 

  • Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005) Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet 37:630–635

    PubMed  CAS  Google Scholar 

  • Vellai T, Takacs-Vellai K, Sass M, Klionsky DJ (2009) The regulation of aging: does autophagy underlie longevity? Trends Cell Biol 19:487–494

    PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537

    PubMed  CAS  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    PubMed  CAS  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071

    PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wallace MA, Liou LL, Martins J, Clement MH, Bailey S, Longo VD, Valentine JS, Gralla EB (2004) Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 279:32055–32062

    PubMed  CAS  Google Scholar 

  • Ward WF (2002) Protein degradation in the aging organism. Prog Mol Subcell Biol 29:35–42

    PubMed  CAS  Google Scholar 

  • Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45:138–148

    PubMed  CAS  Google Scholar 

  • Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    PubMed  CAS  Google Scholar 

  • Yen WL, Klionsky DJ (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 23:248–262

    CAS  Google Scholar 

  • Young VR, Borgonha S (2000) Nitrogen and amino acid requirements: the Massachusetts Institute of Technology amino acid requirement pattern. J Nutr 130:1841S–1849S

    PubMed  CAS  Google Scholar 

  • Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support that we have received from the NIH (AG023719 to JPA; AG17994 to CL; CA95552 to WAD), including the Claude D. Pepper Older Americans Independence Center (AG028740), and the University of Florida Institute on Aging. We acknowledge the Honors Program at the University of Florida, which has facilitated the participation of undergraduate students in our research efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Aris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aris, J.P., Fishwick, L.K., Marraffini, M.L., Seo, A.Y., Leeuwenburgh, C., Dunn, W.A. (2011). Amino Acid Homeostasis and Chronological Longevity in Saccharomyces cerevisiae . In: Breitenbach, M., Jazwinski, S., Laun, P. (eds) Aging Research in Yeast. Subcellular Biochemistry, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2561-4_8

Download citation

Publish with us

Policies and ethics