Chronological Aging in Saccharomyces cerevisiae

  • Valter D. LongoEmail author
  • Paola FabrizioEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 57)


The two paradigms to study aging in Saccharomyces cerevisiae are the chronological life span (CLS) and the replicative life span (RLS). The chronological life span is a measure of the mean and maximum survival time of non-dividing yeast populations while the replicative life span is based on the mean and maximum number of daughter cells generated by an individual mother cell before cell division stops irreversibly. Here we review the principal discoveries associated with yeast chronological aging and how they are contributing to the understanding of the aging process and of the molecular mechanisms that may lead to healthy aging in mammals. We will focus on the mechanisms of life span regulation by the Tor/Sch9 and the Ras/adenylate cyclase/PKA pathways with particular emphasis on those implicating age-dependent oxidative stress and DNA damage/repair .


Chronological aging TOR (target of rapamycin) RAS Adaptive regrowth Caloric restriction 


  1. Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O et al (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100PubMedCrossRefGoogle Scholar
  2. Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:9100–9105PubMedCrossRefGoogle Scholar
  3. Barker MG, Walmsley RM (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15:1511–1518PubMedCrossRefGoogle Scholar
  4. Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166:765–777PubMedCrossRefGoogle Scholar
  5. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33PubMedCrossRefGoogle Scholar
  6. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270PubMedCrossRefGoogle Scholar
  7. Busuttil RA, Garcia AM, Cabrera C, Rodriguez A, Suh Y et al (2005) Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res 65:11271–11275PubMedCrossRefGoogle Scholar
  8. Castelein N, Hoogewijs D, De Vreese A, Braeckman BP, Vanfleteren JR (2008) Dietary restriction by growth in axenic medium induces discrete changes in the transcriptional output of genes involved in energy metabolism in Caenorhabditis elegans. Biotechnol J 3:803–812PubMedCrossRefGoogle Scholar
  9. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106PubMedCrossRefGoogle Scholar
  10. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB et al (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807PubMedCrossRefGoogle Scholar
  11. D’Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C et al (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459PubMedGoogle Scholar
  12. Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171:37–42PubMedGoogle Scholar
  13. Enns LC, Morton JF, Treuting PR, Emond MJ, Wolf NS et al (2009) Disruption of protein kinase A in mice enhances healthy aging. PLoS One 4:e5963PubMedCrossRefGoogle Scholar
  14. Fabrizio P et al (2010), Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6(8):1227–1228Google Scholar
  15. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL et al (2004a) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067PubMedCrossRefGoogle Scholar
  16. Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C et al (2005a) Sir2 blocks extreme life-span extension. Cell 123:655–667PubMedCrossRefGoogle Scholar
  17. Fabrizio P, Li L, Longo VD (2005b) Analysis of gene expression profile in yeast aging chronologically. Mech Ageing Dev 126:11–16PubMedCrossRefGoogle Scholar
  18. Fabrizio P, Liou LL, Moy VN, Diaspro A, Selverstone-Valentine J et al (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163:35–46PubMedGoogle Scholar
  19. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81PubMedCrossRefGoogle Scholar
  20. Fabrizio P, Longo VD (2007) The chronological life span of Saccharomyces cerevisiae. Meth Mol Biol 371:89–95CrossRefGoogle Scholar
  21. Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004b) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142PubMedCrossRefGoogle Scholar
  22. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290PubMedCrossRefGoogle Scholar
  23. Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130PubMedCrossRefGoogle Scholar
  24. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86PubMedGoogle Scholar
  25. Guevara-Aguirre J et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3(70):70ra13PubMedCrossRefGoogle Scholar
  26. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F et al (2007) Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282:32844–32855PubMedCrossRefGoogle Scholar
  27. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128PubMedCrossRefGoogle Scholar
  28. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ et al (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110PubMedCrossRefGoogle Scholar
  29. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar
  30. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395PubMedGoogle Scholar
  31. Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J (2003) Aging and genome maintenance: lessons from the mouse? Science 299:1355–1359PubMedCrossRefGoogle Scholar
  32. Hertweck M, Gobel C, Baumeister R (2004) C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 6:577–588PubMedCrossRefGoogle Scholar
  33. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187PubMedCrossRefGoogle Scholar
  34. Hu D, Cao P, Thiels E, Chu CT, Wu GY et al (2007) Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase. Neurobiol Learn Mem 87:372–384PubMedCrossRefGoogle Scholar
  35. Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A (2003) Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 58:291–296PubMedCrossRefGoogle Scholar
  36. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906PubMedCrossRefGoogle Scholar
  37. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580PubMedCrossRefGoogle Scholar
  38. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196PubMedCrossRefGoogle Scholar
  39. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890PubMedCrossRefGoogle Scholar
  40. Kennedy BK, Austriaco NRJ, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127:1985–1993PubMedCrossRefGoogle Scholar
  41. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460PubMedCrossRefGoogle Scholar
  42. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946PubMedCrossRefGoogle Scholar
  43. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833PubMedCrossRefGoogle Scholar
  44. Ladiges W, Van Remmen H, Strong R, Ikeno Y, Treuting P et al (2009) Lifespan extension in genetically modified mice. Aging Cell 8:346–352PubMedCrossRefGoogle Scholar
  45. LaFever L, Drummond-Barbosa D (2005) Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309:1071–1073PubMedCrossRefGoogle Scholar
  46. Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139:1567–1583PubMedGoogle Scholar
  47. Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – a comparison. Exp Gerontol 41:1208–1212PubMedCrossRefGoogle Scholar
  48. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393PubMedCrossRefGoogle Scholar
  49. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322PubMedCrossRefGoogle Scholar
  50. Lin YY, Lu JY, Zhang J, Walter W, Dang W et al (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136:1073–1084PubMedCrossRefGoogle Scholar
  51. Longo V (1997) The chronological life span of Saccharomyces cerevisiae. Studies of superoxide dismutase, Ras and Bcl-2. Thesis, University of California, Los Angeles, CAGoogle Scholar
  52. Longo VD (2009) Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44:70–74PubMedCrossRefGoogle Scholar
  53. Longo VD, Fabrizio P (2002) Regulation of longevity and stress resistance: a molecular strategy conserved from yeast to humans? Cell Mol Life Sci 59:903–908PubMedCrossRefGoogle Scholar
  54. Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians. Science 299:1342–1346PubMedCrossRefGoogle Scholar
  55. Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280PubMedCrossRefGoogle Scholar
  56. Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126:257–268PubMedCrossRefGoogle Scholar
  57. Longo VD, Lieber MR, Vijg J (2008) Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol 9:903–910PubMedCrossRefGoogle Scholar
  58. Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131–142PubMedCrossRefGoogle Scholar
  59. Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872PubMedCrossRefGoogle Scholar
  60. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415PubMedGoogle Scholar
  61. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T et al (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660PubMedCrossRefGoogle Scholar
  62. Madia F, Gattazzo C, Fabrizio P, Longo VD (2007) A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 128(1):45–49PubMedCrossRefGoogle Scholar
  63. Madia F, Gattazzo C, Wei M, Fabrizio P, Burhans WC et al (2008) Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J Cell Biol 180:67–81PubMedCrossRefGoogle Scholar
  64. Madia F, Wei M, Yuan V, Hu J, Gattazzo C et al (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186:509–523PubMedCrossRefGoogle Scholar
  65. Mair W, Dillin A (2008) Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 77:727–754PubMedCrossRefGoogle Scholar
  66. McElwee JJ, Schuster E, Blanc E, Thornton J, Gems D (2006) Diapause-associated metabolic traits reiterated in long-lived daf-2 mutants in the nematode Caenorhabditis elegans. Mech Ageing Dev 127:458–472PubMedCrossRefGoogle Scholar
  67. Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007) MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5:e261PubMedCrossRefGoogle Scholar
  68. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313PubMedCrossRefGoogle Scholar
  69. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phospatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhbditis elegans. Nature 382:536–539PubMedCrossRefGoogle Scholar
  70. Mortimer RK (1959) Life span of individual yeast cells. Nature 183:1751–1752PubMedCrossRefGoogle Scholar
  71. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999PubMedCrossRefGoogle Scholar
  72. Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130PubMedCrossRefGoogle Scholar
  73. Pages V, Bresson A, Acharya N, Prakash S, Fuchs RP et al (2008) Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180:73–82PubMedCrossRefGoogle Scholar
  74. Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1:131–145PubMedGoogle Scholar
  75. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13:1438–1452PubMedCrossRefGoogle Scholar
  76. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498PubMedCrossRefGoogle Scholar
  77. Pfeifer GP (2000) p53 mutational spectra and the role of methylated CpG sequences. Mutat Res 450:155–166PubMedCrossRefGoogle Scholar
  78. Pinkston JM, Garigan D, Hansen M, Kenyon C (2006) Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313:971–975PubMedCrossRefGoogle Scholar
  79. Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–218PubMedCrossRefGoogle Scholar
  80. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518PubMedCrossRefGoogle Scholar
  81. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184PubMedCrossRefGoogle Scholar
  82. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras [see comments]. Nature 370:527–532PubMedCrossRefGoogle Scholar
  83. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003PubMedCrossRefGoogle Scholar
  84. Rohde JR, Bastidas R, Puria R, Cardenas ME (2008) Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 11:153–160PubMedCrossRefGoogle Scholar
  85. Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P et al (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5:e1000408PubMedCrossRefGoogle Scholar
  86. Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5:345–357PubMedCrossRefGoogle Scholar
  87. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE et al (2005) Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911Google Scholar
  88. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144PubMedCrossRefGoogle Scholar
  89. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91:1033–1042PubMedCrossRefGoogle Scholar
  90. Skeen JE, Bhaskar PT, Chen CC, Chen WS, Peng XD et al (2006) Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 10:269–280PubMedCrossRefGoogle Scholar
  91. Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54PubMedCrossRefGoogle Scholar
  92. Strauss E (2001) Longevity. Growing old together. Science 292:41–43PubMedCrossRefGoogle Scholar
  93. Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672PubMedGoogle Scholar
  94. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM et al (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110PubMedCrossRefGoogle Scholar
  95. Tatar M, Yin C (2001) Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol 36:723–738PubMedCrossRefGoogle Scholar
  96. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230PubMedCrossRefGoogle Scholar
  97. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D et al (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674PubMedCrossRefGoogle Scholar
  98. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N et al (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37PubMedCrossRefGoogle Scholar
  99. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L et al (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620PubMedCrossRefGoogle Scholar
  100. Vergara M, Smith-Wheelock M, Harper JM, Sigler R, Miller RA (2004) Hormone-treated snell dwarf mice regain fertility but remain long lived and disease resistant. J Gerontol A Biol Sci Med Sci 59:1244–1250PubMedCrossRefGoogle Scholar
  101. Vijg J (2007) Aging of the genome. Oxford University Press, OxfordCrossRefGoogle Scholar
  102. Wei M, Fabrizio P, Hu J, Ge H, Cheng C et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13PubMedCrossRefGoogle Scholar
  103. Wei M, Fabrizio P, Madia F, Hu J, Ge H et al (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5:e1000467PubMedCrossRefGoogle Scholar
  104. Weinberger M, Feng L, Paul A, Smith DL Jr, Hontz RD et al (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2:e748PubMedCrossRefGoogle Scholar
  105. Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401PubMedGoogle Scholar
  106. Williams KD, Busto M, Suster ML, So AK, Ben-Shahar Y et al (2006) Natural variation in Drosophila melanogaster diapause due to the insulin-regulated PI3-kinase. Proc Natl Acad Sci USA 103:15911–15915PubMedCrossRefGoogle Scholar
  107. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A et al (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034PubMedCrossRefGoogle Scholar
  108. Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H et al (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258PubMedCrossRefGoogle Scholar
  109. Yoeli-Lerner M, Toker A (2006) Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle 5:603–605PubMedCrossRefGoogle Scholar
  110. Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5:245PubMedGoogle Scholar
  111. Zambrano MM, Kolter R (1996) GASPing for life in stationary phase. Cell 86:181–184PubMedCrossRefGoogle Scholar
  112. Zambrano MM, Siegele DA, Almiron M, Tormo A, Kolter R (1993) Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760PubMedCrossRefGoogle Scholar
  113. Zinser ER, Kolter R (2004) Escherichia coli evolution during stationary phase. Res Microbiol 155:328–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Biological SciencesAndrus Gerontology Center, University of Southern CaliforniaLos AngelesUSA
  2. 2.Laboratory of Molecular and Cellular BiologyUMR5239 CNRS, Ecole Normale Supérieure de LyonLyonFrance

Personalised recommendations