Advertisement

The Retrograde Response and Other Pathways of Interorganelle Communication in Yeast Replicative Aging

  • S. Michal JazwinskiEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 57)

Abstract

A form of mitochondria-to-nucleus signaling is known to play a role in determining replicative life span in yeast. This retrograde response is triggered by experimentally-induced mitochondrial dysfunction , but it also is activated during the course of normal replicative aging, allowing yeast to have as long a replicative life span as they do. The components of the retrograde signaling pathway participate in diverse cellular processes such as mitophagy , which appear to be involved in mitochondrial quality control . This plethora of mitochondrial surveillance mechanisms points to the central importance of this organelle in yeast replicative aging. Additional pathways that monitor mitochondrial status that do not apparently involve the retrograde response machinery also play a role. A unifying theme is the involvement of the target of rapamycin (TOR ) in both these additional pathways and in the retrograde response. The involvement of TOR brings another large family of signaling events into juxtaposition. Ceramide synthesis is regulated by TOR opening up the potential for coordination of mitochondrial status with a wide array of additional cellular processes. The retrograde response lies at the nexus of metabolic regulation , stress resistance , chromatin-dependent gene regulation , and genome stability . In its metabolic outputs, it is related to calorie restriction, which may be the result of the involvement of TOR. Retrograde response-like processes have been identified in systems other than yeast, including mammalian cells . The retrograde response is a prototypical pathway of interorganelle communication. Other such phenomena are emerging, such as the cross-talk between mitochondria and the vacuole , which involves components of the retrograde signaling pathway. The impact of these varied physiological responses on yeast replicative aging remains to be assessed.

Keywords

Aging Longevity Yeast Mitochondria Retrograde response 

Notes

Acknowledgments

The research in the author’s laboratory is supported by grants from the National Institute on Aging of the National Institutes of Health (U.S.P.H.S.). The support of Heinz Keller of Schwarzwald, Switzerland is gratefully acknowledged.

References

  1. Aronova S, Wedaman K et al (2008) Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab 7(2):148–158PubMedCrossRefGoogle Scholar
  2. Barros MH, Bandy B et al (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279(48):49883–49888PubMedCrossRefGoogle Scholar
  3. Berger KH, Yaffe MP (1998) Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol 18(7):4043–4052PubMedGoogle Scholar
  4. Bhatia-Kissova I, Camougrand N (2010) Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res 10(8):1023–1034PubMedCrossRefGoogle Scholar
  5. Bhattacharyya S, Rolfsmeier ML et al (2002) Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae. Genetics 162(2):579–589PubMedGoogle Scholar
  6. Borghouts C, Benguria A et al (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166(2):765–777PubMedCrossRefGoogle Scholar
  7. Breitkreutz A, Choi H et al (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046PubMedCrossRefGoogle Scholar
  8. Broek D, Samiy N et al (1985) Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41(3):763–769PubMedCrossRefGoogle Scholar
  9. Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14(1):1–15PubMedCrossRefGoogle Scholar
  10. Chen EJ, Kaiser CA (2002) Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae. Proc Natl Acad Sci USA 99(23):14837–14842PubMedCrossRefGoogle Scholar
  11. Chen EJ, Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161(2):333–347PubMedCrossRefGoogle Scholar
  12. Chen JB, Sun J et al (1990) Prolongation of the yeast life span by the v-Ha-RAS oncogene. Mol Microbiol 4(12):2081–2086PubMedCrossRefGoogle Scholar
  13. Chen S, Liu D et al (2010) Loss of mitochondrial DNA in the yeast cardiolipin synthase crd1 mutant leads to up-regulation of the protein kinase Swe1p that regulates the G2/M transition. J Biol Chem 285(14):10397–10407PubMedCrossRefGoogle Scholar
  14. Chen S, Tarsio M et al (2008) Cardiolipin mediates cross-talk between mitochondria and the vacuole. Mol Biol Cell 19(12):5047–5058PubMedCrossRefGoogle Scholar
  15. Chen XJ, Wang X et al (2005) Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307(5710):714–717PubMedCrossRefGoogle Scholar
  16. Collier JJ, Doan TT et al (2003) c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J Biol Chem 278(8):6588–6595PubMedCrossRefGoogle Scholar
  17. Cristina D, Cary M et al (2009) A regulated response to impaired respiration slows behavioral rates and increases lifespan in Caenorhabditis elegans. PLoS Genet 5(4):e1000450PubMedCrossRefGoogle Scholar
  18. D’Mello NP, Childress AM et al (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269(22):15451–15459PubMedGoogle Scholar
  19. Dejean L, Beauvoit B et al (2002) Activation of Ras cascade increases the mitochondrial enzyme content of respiratory competent yeast. Biochem Biophys Res Commun 293(5):1383–1388PubMedCrossRefGoogle Scholar
  20. Delsite RL, Rasmussen LJ et al (2003) Mitochondrial impairment is accompanied by impaired oxidative DNA repair in the nucleus. Mutagenesis 18(6):497–503PubMedCrossRefGoogle Scholar
  21. Dickson RC (2010) Roles for sphingolipids in Saccharomyces cerevisiae. Adv Exp Med Biol 688:217–231PubMedCrossRefGoogle Scholar
  22. Dillin A, Hsu AL et al (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298(5602):2398–2401PubMedCrossRefGoogle Scholar
  23. Dilova I, Aronova S et al (2004) Tor signaling and nutrient-based signals converge on Mks1p phosphorylation to regulate expression of Rtg1.Rtg3p-dependent target genes. J Biol Chem 279(45):46527–46535PubMedCrossRefGoogle Scholar
  24. Dilova I, Chen CY et al (2002) Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr Biol 12(5):389–395PubMedCrossRefGoogle Scholar
  25. Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171(1):37–42PubMedGoogle Scholar
  26. Eisenberg T, Knauer H et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314PubMedCrossRefGoogle Scholar
  27. Eldakak A, Rancati G et al (2010) Asymmetrically inherited multidrug resistance transporters are recessive determinants in cellular replicative ageing. Nat Cell Biol 12(8):799–805PubMedCrossRefGoogle Scholar
  28. Epstein CB, Waddle JA et al (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12(2):297–308PubMedGoogle Scholar
  29. Forsberg H, Ljungdahl PO (2001) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 40(2):91–109PubMedCrossRefGoogle Scholar
  30. Giannattasio S, Liu Z et al (2005) Retrograde response to mitochondrial dysfunction is separable from TOR1/2 regulation of retrograde gene expression. J Biol Chem 280(52):42528–42535PubMedCrossRefGoogle Scholar
  31. Guaragnella N, Butow RA (2003) ATO3 encoding a putative outward ammonium transporter is an RTG-independent retrograde responsive gene regulated by GCN4 and the Ssy1-Ptr3-Ssy5 amino acid sensor system. J Biol Chem 278(46):45882–45887PubMedCrossRefGoogle Scholar
  32. Guillas I, Kirchman PA et al (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20(11):2655–2665PubMedCrossRefGoogle Scholar
  33. Hallstrom TC, Moye-Rowley WS (2000) Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275(48):37347–37356PubMedCrossRefGoogle Scholar
  34. Heddi A, Lestienne P et al (1993) Mitochondrial DNA expression in mitochondrial myopathies and coordinated expression of nuclear genes involved in ATP production. J Biol Chem 268(16):12156–12163PubMedGoogle Scholar
  35. Heeren G, Rinnerthaler M et al (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 1(7):622–636Google Scholar
  36. Hlavata L, Aguilaniu H et al (2003) The oncogenic RAS2(val19) mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO J 22(13):3337–3345PubMedCrossRefGoogle Scholar
  37. Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13(4):573–585PubMedCrossRefGoogle Scholar
  38. Jazwinski SM (1999) Molecular mechanisms of yeast longevity. Trends Microbiol 7(6):247–252PubMedCrossRefGoogle Scholar
  39. Jazwinski SM (2000) Metabolic control and gene dysregulation in yeast aging. Ann NY Acad Sci 908:21–30PubMedCrossRefGoogle Scholar
  40. Jazwinski SM (2003) Yeast longevity and aging. In: Osiewacz HD (ed) Aging of organisms. Kluwer, Dordrecht, pp 1–30Google Scholar
  41. Jazwinski SM (2004) Yeast replicative life span – the mitochondrial connection. FEMS Yeast Res 5(2):119–125PubMedCrossRefGoogle Scholar
  42. Jazwinski SM (2005) The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene 354:22–27PubMedCrossRefGoogle Scholar
  43. Jia Y, Rothermel B et al (1997) A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 17(3):1110–1117PubMedGoogle Scholar
  44. Jiang JC, Jaruga E et al (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14(14):2135–2137PubMedGoogle Scholar
  45. Jiang JC, Kirchman PA et al (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res 8(12):1259–1272PubMedGoogle Scholar
  46. Jiang JC, Kirchman PA et al (2004) Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp Gerontol 39(7):999–1009PubMedCrossRefGoogle Scholar
  47. Journo D, Mor A et al (2009) Aup1-mediated regulation of Rtg3 during mitophagy. J Biol Chem 284(51):35885–35895PubMedCrossRefGoogle Scholar
  48. Kaeberlein M, Powers RW 3rd et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196PubMedCrossRefGoogle Scholar
  49. Kamada Y, Fujioka Y et al (2005) Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25(16):7239–7248PubMedCrossRefGoogle Scholar
  50. Kamada Y, Yoshino K et al (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30(4):1049–1058PubMedCrossRefGoogle Scholar
  51. Kanki T, Wang K et al (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20(22):4730–4738PubMedCrossRefGoogle Scholar
  52. Kennedy BK, Austriaco NR et al (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80(3):485–496PubMedCrossRefGoogle Scholar
  53. Kim S, Benguria A et al (1999) Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 10(10):3125–3136PubMedGoogle Scholar
  54. Kim S, Ohkuni K et al (2004) The histone acetyltransferase GCN5 modulates the retrograde response and genome stability determining yeast longevity. Biogerontology 5(5):305–316PubMedCrossRefGoogle Scholar
  55. Kirchman PA, Kim S et al (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152(1):179–190PubMedGoogle Scholar
  56. Kirchman PA, Miceli MV et al (2003) Prohibitins and Ras2 protein cooperate in the maintenance of mitochondrial function during yeast aging. Acta Biochim Pol 50(4):1039–1056PubMedGoogle Scholar
  57. Kissova I, Deffieu M et al (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279(37):39068–39074PubMedCrossRefGoogle Scholar
  58. Kissova I, Salin B et al (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3(4):329–336PubMedGoogle Scholar
  59. Klinger H, Rinnerthaler M et al (2010) Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45(7–8):533–542PubMedCrossRefGoogle Scholar
  60. Kolaczkowski M, Kolaczkowska A et al (2004) Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryot Cell 3(4):880–892PubMedCrossRefGoogle Scholar
  61. Komeili A, Wedaman KP et al (2000) Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151(4):863–878PubMedCrossRefGoogle Scholar
  62. Koonin EV (1994) Yeast protein controlling inter-organelle communication is related to bacterial phosphatases containing the Hsp 70-type ATP-binding domain. Trends Biochem Sci 19(4):156–157PubMedCrossRefGoogle Scholar
  63. Kornmann B, Walter P (2010) ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J Cell Sci 123(Pt 9):1389–1393PubMedCrossRefGoogle Scholar
  64. Lai CY, Jaruga E et al (2002) A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162(1):73–87PubMedGoogle Scholar
  65. Laun P, Pichova A et al (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39(5):1166–1173PubMedCrossRefGoogle Scholar
  66. Lee SS, Lee RY et al (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33(1):40–48PubMedCrossRefGoogle Scholar
  67. Liao X, Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72(1):61–71PubMedCrossRefGoogle Scholar
  68. Liao XS, Small WC et al (1991) Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Mol Cell Biol 11(1):38–46PubMedGoogle Scholar
  69. Liu Z, Butow RA (1999) A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol 19(10):6720–6728PubMedGoogle Scholar
  70. Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185PubMedCrossRefGoogle Scholar
  71. Liu Z, Sekito T et al (2001) RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p. EMBO J 20(24):7209–7219PubMedCrossRefGoogle Scholar
  72. Liu Z, Sekito T et al (2003) Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell 12(2):401–411PubMedCrossRefGoogle Scholar
  73. Liu Z, Spirek M et al (2005) A novel degron-mediated degradation of the RTG pathway regulator, Mks1p, by SCFGrr1. Mol Biol Cell 16(10):4893–4904PubMedCrossRefGoogle Scholar
  74. Loewith R, Jacinto E et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468PubMedCrossRefGoogle Scholar
  75. Massari ME, Grant PA et al (1999) A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol Cell 4(1):63–73PubMedCrossRefGoogle Scholar
  76. Matsuura A, Anraku Y (1993) Characterization of the MKS1 gene, a new negative regulator of the Ras-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Gen Genet 238(1–2):6–16PubMedGoogle Scholar
  77. McMurray MA, Gottschling DE (2003) An age-induced switch to a hyper-recombinational state. Science 301(5641):1908–1911PubMedCrossRefGoogle Scholar
  78. Miceli MV, Jazwinski SM (2005) Common and cell type-specific responses of human cells to mitochondrial dysfunction. Exp Cell Res 302(2):270–280PubMedCrossRefGoogle Scholar
  79. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752PubMedCrossRefGoogle Scholar
  80. Mosch HU, Roberts RL et al (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93(11):5352–5356PubMedCrossRefGoogle Scholar
  81. Moye-Rowley WS (2005) Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene 354:15–21PubMedCrossRefGoogle Scholar
  82. Nijtmans LG, de Jong L et al (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19(11):2444–2451PubMedCrossRefGoogle Scholar
  83. Palkova Z, Devaux F et al (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13(11):3901–3914PubMedCrossRefGoogle Scholar
  84. Parikh VS, Morgan MM et al (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235(4788):576–580PubMedCrossRefGoogle Scholar
  85. Passos JF, Saretzki G et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5(5):e110PubMedCrossRefGoogle Scholar
  86. Pichova A, Vondrakova D et al (1997) Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can J Microbiol 43(8):774–781PubMedCrossRefGoogle Scholar
  87. Piper PW, Jones GW et al (2002) The shortened replicative life span of prohibitin mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells. Aging Cell 1(2):149–157PubMedCrossRefGoogle Scholar
  88. Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607PubMedCrossRefGoogle Scholar
  89. Pray-Grant MG, Schieltz D et al (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22(24):8774–8786PubMedCrossRefGoogle Scholar
  90. Rasmussen AK, Chatterjee A et al (2003) Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucl Acid Res 31(14):3909–3917CrossRefGoogle Scholar
  91. Reinke A, Anderson S et al (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279(15):14752–14762PubMedCrossRefGoogle Scholar
  92. Roberg KJ, Bickel S et al (1997) Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147(4):1569–1584PubMedGoogle Scholar
  93. Rothermel BA, Shyjan AW et al (1995) Transactivation by Rtg1p, a basic helix-loop-helix protein that functions in communication between mitochondria and the nucleus in yeast. J Biol Chem 270(49):29476–29482PubMedCrossRefGoogle Scholar
  94. Rothermel BA, Thornton JL et al (1997) Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J Biol Chem 272(32):19801–19807PubMedCrossRefGoogle Scholar
  95. Scheckhuber CQ, Erjavec N et al (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9(1):99–105PubMedCrossRefGoogle Scholar
  96. Schorling S, Vallee B et al (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell 12(11):3417–3427PubMedGoogle Scholar
  97. Sekito T, Liu Z et al (2002) RTG-dependent mitochondria-to-nucleus signaling is regulated by MKS1 and is linked to formation of yeast prion [URE3]. Mol Biol Cell 13(3):795–804PubMedCrossRefGoogle Scholar
  98. Sekito T, Thornton J et al (2000) Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell 11(6):2103–2115PubMedGoogle Scholar
  99. Small WC, Brodeur RD et al (1995) Enzymatic and metabolic studies on retrograde regulation mutants of yeast. Biochemistry 34(16):5569–5576PubMedCrossRefGoogle Scholar
  100. Spedale G, Mischerikow N et al (2010) Identification of Pep4p as the protease responsible for formation of the SAGA-related SLIK protein complex. J Biol Chem 285(30):22793–22799PubMedCrossRefGoogle Scholar
  101. Srinivasan V, Kriete A et al (2010) Comparing the yeast retrograde response and NF-kappaB stress responses: implications for aging. Aging Cell 9(6):933–941PubMedCrossRefGoogle Scholar
  102. Steffen KK, MacKay VL et al (2008) Yeast life span extension by depletion of 60 s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302PubMedCrossRefGoogle Scholar
  103. Stockl P, Zankl C et al (2007) Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells. Free Radic Biol Med 43(6):947–958PubMedCrossRefGoogle Scholar
  104. Sun J, Kale SP et al (1994) Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem 269(28):18638–18645PubMedGoogle Scholar
  105. Tate JJ, Cox KH et al (2002) Mks1p is required for negative regulation of retrograde gene expression in Saccharomyces cerevisiae but does not affect nitrogen catabolite repression-sensitive gene expression. J Biol Chem 277(23):20477–20482PubMedCrossRefGoogle Scholar
  106. Thevissen K, Yen WL et al (2010) Skn1 and Ipt1 negatively regulate autophagy in Saccharomyces cerevisiae. FEMS Microbiol Lett 303(2):163–168PubMedCrossRefGoogle Scholar
  107. Traven A, Wong JM et al (2001) Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276(6):4020–4027PubMedCrossRefGoogle Scholar
  108. van Heusden GP, Steensma HY (2001) 14-3-3 Proteins are essential for regulation of RTG3-dependent transcription in Saccharomyces cerevisiae. Yeast 18(16):1479–1491PubMedCrossRefGoogle Scholar
  109. Vanfleteren JR, De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J 9(13):1355–1361PubMedGoogle Scholar
  110. Veatch JR, McMurray MA et al (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137(7):1247–1258PubMedCrossRefGoogle Scholar
  111. Wang J, Jiang JC et al (2010) Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol 45(7–8):621–631PubMedCrossRefGoogle Scholar
  112. Wang X, Zuo X et al (2008) Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nat Cell Biol 10(9):1090–1097PubMedCrossRefGoogle Scholar
  113. Wedaman KP, Reinke A et al (2003) Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14(3):1204–1220PubMedCrossRefGoogle Scholar
  114. Woo DK, Poyton RO (2009) The absence of a mitochondrial genome in rho0 yeast cells extends lifespan independently of retrograde regulation. Exp Gerontol 44(6–7):390–397PubMedCrossRefGoogle Scholar
  115. Wullschleger S, Loewith R et al (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MedicineTulane University Health Sciences Center, Tulane Center for Aging, Tulane UniversityNew OrleansUSA

Personalised recommendations