Genetic Approaches to Aging in Budding and Fission Yeasts: New Connections and New Opportunities

  • Bo-Ruei Chen
  • Kurt W. RungeEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 57)


Yeasts are powerful model systems to examine the evolutionarily conserved aspects of eukaryotic aging because they maintain many of the same core cellular signaling pathways and essential organelles as human cells. We constructed a strain of the budding yeast Saccharomyces cerevisiae that could monitor the distribution of proteins involved in heterochromatic silencing and aging, and isolated mutants that alter this distribution. The largest class of such mutants cause defects in mitochondria l function, and appear to cause changes in nuclear silencing separate from the well-known Rtg2p-dependent pathway that alters nuclear transcription in response to the loss of the mitochondria l genome. Mutants that inactivate the ATP2 gene, which encodes the ATPase subunit of the mitochondria l F1F0-ATPase , were isolated twice in our screen and identify a lifespan extending pathway in a gene that is conserved in both prokaryotes and eukaryotes. The budding yeast S. cerevisiae has been used with great success to identify other lifespan-extending pathways in screens using surrogate phenotypes such as stress resistance or silencing to identify random mutants, or in high throughput screens that utilize the deletion strain set resource. However, the direct selection of long-lived mutants from a pool of random mutants is more challenging. We have established a new chronological aging assay for the evolutionarily distant fission yeast Schizosaccharomyces pombe that recapitulates aspects of aging conserved in all eukaryotes. We have constructed a novel S. pombe DNA insertion mutant bank, and used it to show that we can directly select for a long-lived mutant. The use of both the budding and fission yeast systems should continue to facilitate the identification and validation of lifespan extending pathways that are conserved in humans.


Schizosaccharomyces pombe Saccharomyces cerevisiae Silencing Chromatin Respiration 



Chronological LifeSpan, the length of time a cell or organism can survive. In yeast, this corresponds to the length of time cells survive in stationary phase in nutrient depleted medium.


Replicative LifeSpan, the number of times a cell can divide prior to senescence.


  1. Ai W, Bertram PG, Tsang CK, Chan TF, Zheng XF (2002) Regulation of subtelomeric silencing during stress response. Mol Cell 10:1295–1305PubMedCrossRefGoogle Scholar
  2. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659PubMedCrossRefGoogle Scholar
  3. Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res 25:868–872PubMedCrossRefGoogle Scholar
  4. Azuma K, Ohtsuka H, Mita S, Murakami H, Aiba H (2009) Identification and characterization of an Ecl1-family gene in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73:2787–2789PubMedCrossRefGoogle Scholar
  5. Barker MG, Walmsley RM (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15:1511–1518PubMedCrossRefGoogle Scholar
  6. Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844PubMedCrossRefGoogle Scholar
  7. Brun C, Dubey DD, Huberman JA (1995) pDblet, a stable autonomously replicating shuttle vector for Schizosaccharomyces pombe. Gene 164:173–177PubMedCrossRefGoogle Scholar
  8. Burns N, Grimwade B, Ross MP, Choi EY, Finberg K, Roeder GS, Snyder M (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8:1087–1105PubMedCrossRefGoogle Scholar
  9. Caballero A, Ugidos A, Liu B, Oling D, Kvint K, Hao X, Mignat C, Nachin L, Molin M, Nystrom T (2011) Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. Mol Cell 42:390–400PubMedCrossRefGoogle Scholar
  10. Carroll AS, O’Shea EK (2002) Pho85 and signaling environmental conditions. Trends Biochem Sci 27:87–93PubMedCrossRefGoogle Scholar
  11. Charbonnier S, Gallego O, Gavin AC (2008) The social network of a cell: recent advances in interactome mapping. Biotechnol Annu Rev 14:1–28PubMedCrossRefGoogle Scholar
  12. Chen BR, Runge KW (2009) A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity. Exp Gerontol 44:493–502PubMedCrossRefGoogle Scholar
  13. Devon RS, Porteous DJ, Brookes AJ (1995) Splinkerettes – improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23:1644–1645PubMedCrossRefGoogle Scholar
  14. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401PubMedCrossRefGoogle Scholar
  15. Dilova I, Easlon E, Lin SJ (2007) Calorie restriction and the nutrient sensing signaling pathways. Cell Mol Life Sci 64:752–767PubMedCrossRefGoogle Scholar
  16. Erjavec N, Cvijovic M, Klipp E, Nystrom T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA 105:18764–18769PubMedCrossRefGoogle Scholar
  17. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067PubMedCrossRefGoogle Scholar
  18. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81PubMedCrossRefGoogle Scholar
  19. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290PubMedCrossRefGoogle Scholar
  20. Gasser SM, Cockell MM (2001) The molecular biology of the SIR proteins. Gene 279:1–16PubMedCrossRefGoogle Scholar
  21. Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29:482–486PubMedCrossRefGoogle Scholar
  22. Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203PubMedCrossRefGoogle Scholar
  23. Guarente L (2008) Mitochondria–a nexus for aging, calorie restriction, and sirtuins? Cell 132:171–176PubMedCrossRefGoogle Scholar
  24. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262PubMedCrossRefGoogle Scholar
  25. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555PubMedCrossRefGoogle Scholar
  26. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849PubMedCrossRefGoogle Scholar
  27. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183PubMedCrossRefGoogle Scholar
  28. Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR protocols: a guide to methods and applications. Academic Press, Inc, San DiegoGoogle Scholar
  29. Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066PubMedCrossRefGoogle Scholar
  30. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196PubMedCrossRefGoogle Scholar
  31. Kennedy BK, Austriaco NJ, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496PubMedCrossRefGoogle Scholar
  32. Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, Pak SM, Laroche T, Gasser SM, Guarente L (1997) Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89:381–391PubMedCrossRefGoogle Scholar
  33. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623PubMedCrossRefGoogle Scholar
  34. Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152:179–190PubMedGoogle Scholar
  35. Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3:e24PubMedCrossRefGoogle Scholar
  36. Lafon A, Chang CS, Scott EM, Jacobson SJ, Pillus L (2007) MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 26:5373–5384PubMedCrossRefGoogle Scholar
  37. Lai CY, Jaruga E, Borghouts C, Jazwinski SM (2002) A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162:73–87PubMedGoogle Scholar
  38. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013PubMedCrossRefGoogle Scholar
  39. Laroche T, Martin SG, Gotta M, Gorham HC, Pryde FE, Louis EJ, Gasser SM (1998) Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 8:653–656PubMedCrossRefGoogle Scholar
  40. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48PubMedCrossRefGoogle Scholar
  41. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543PubMedCrossRefGoogle Scholar
  42. Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282:943–946PubMedCrossRefGoogle Scholar
  43. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463PubMedCrossRefGoogle Scholar
  44. Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185PubMedCrossRefGoogle Scholar
  45. MacLean M, Harris N, Piper PW (2001) Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast 18:499–509PubMedCrossRefGoogle Scholar
  46. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922PubMedCrossRefGoogle Scholar
  47. Masoro EJ (2007) The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 35:1–17PubMedGoogle Scholar
  48. Matsumoto Y, Wickner RB (1993) CLG1, a new cyclin-like gene of Saccharomyces cerevisiae. Yeast 9:929–931PubMedCrossRefGoogle Scholar
  49. McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10:63–79Google Scholar
  50. Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B (1997) A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17:1212–1223PubMedGoogle Scholar
  51. Metcalfe NB, Monaghan P (2003) Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol 38:935–940PubMedCrossRefGoogle Scholar
  52. Minois N, Frajnt M, Dolling M, Lagona F, Schmid M, Kuchenhoff H, Gampe J, Vaupel JW (2006) Symmetrically dividing cells of the fission yeast Schizosaccharomyces pombe do age. Biogerontology 7:261–267PubMedCrossRefGoogle Scholar
  53. Mishra K, Shore D (1999) Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr Biol 9:1123–1126PubMedCrossRefGoogle Scholar
  54. Moreno S, Klar A, Nurse P (1991) Molecular biology of the fission yeast Schizosacchromyces pombe. Meth Enzym 194:795–823PubMedCrossRefGoogle Scholar
  55. Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63:113–121PubMedGoogle Scholar
  56. Mutoh N, Kitajima S (2007) Accelerated chronological aging of a mutant fission yeast deficient in both glutathione and superoxide dismutase having Cu and Zn as cofactors and its enhancement by sir2 deficiency. Biosci Biotechnol Biochem 71:2841–2844PubMedCrossRefGoogle Scholar
  57. Ohtsuka H, Mita S, Ogawa Y, Azuma K, Ito H, Aiba H (2008) A novel gene, ecl1(+), extends the chronological lifespan in fission yeast. FEMS Yeast Res 8:520–530PubMedCrossRefGoogle Scholar
  58. Ohtsuka H, Ogawa Y, Mizuno H, Mita S, Aiba H (2009) Identification of Ecl family genes that extend chronological lifespan in fission yeast. Biosci Biotechnol Biochem 73:885–889PubMedCrossRefGoogle Scholar
  59. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498PubMedCrossRefGoogle Scholar
  60. Piper MD, Partridge L (2007) Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet 3:e57PubMedCrossRefGoogle Scholar
  61. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184PubMedCrossRefGoogle Scholar
  62. Prentice HL, Kingston RE (1992) Mammalian promoter element function in the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 20:3383–3390PubMedCrossRefGoogle Scholar
  63. Ray A, Hector RE, Roy N, Song JH, Berkner KL, Runge KW (2003) Sir3p phosphorylation by the Slt2p pathway effects redistribution of silencing function and shortened lifespan. Nat Genet 33:522–526PubMedCrossRefGoogle Scholar
  64. Roux AE, Arseneault G, Chartrand P, Ferbeyre G, Rokeach LA (2010) A screen for genes involved in respiration control and longevity in Schizosaccharomyces pombe. Ann N Y Acad Sci 1197:19–27PubMedCrossRefGoogle Scholar
  65. Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5:e1000408PubMedCrossRefGoogle Scholar
  66. Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5:345–357PubMedCrossRefGoogle Scholar
  67. Roy N, Runge KW (2000) Two paralogs involved in transcriptional silencing that antagonistically control yeast life span. Curr Biol 10:111–114PubMedCrossRefGoogle Scholar
  68. Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill DE, van den Heuvel S, Vidal M (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14:2162–2168PubMedCrossRefGoogle Scholar
  69. Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516PubMedCrossRefGoogle Scholar
  70. Sedensky MM, Morgan PG (2006) Mitochondrial respiration and reactive oxygen species in C. elegans. Exp Gerontol 41:957–967PubMedCrossRefGoogle Scholar
  71. Shimanuki M, Chung SY, Chikashige Y, Kawasaki Y, Uehara L, Tsutsumi C, Hatanaka M, Hiraoka Y, Nagao K, Yanagida M (2007) Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe. Genes Cells 12:677–692PubMedCrossRefGoogle Scholar
  72. Sinclair D, Mills K, Guarente L (1998) Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52:533–560PubMedCrossRefGoogle Scholar
  73. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002PubMedCrossRefGoogle Scholar
  74. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63PubMedCrossRefGoogle Scholar
  75. Stone EM, Pillus L (1996) Activation of an MAP kinase cascade leads to Sir3p hyperphosphorylation and strengthens trancriptional silencing. J Cell Biol 135:571–583PubMedCrossRefGoogle Scholar
  76. Su SS, Tanaka Y, Samejima I, Tanaka K, Yanagida M (1996) A nitrogen starvation-induced dormant G0 state in fission yeast: the establishment from uncommitted G1 state and its delay for return to proliferation. J Cell Sci 109(Pt 6):1347–1357PubMedGoogle Scholar
  77. Walhout AJ, Reboul J, Shtanko O, Bertin N, Vaglio P, Ge H, Lee H, Doucette-Stamm L, Gunsalus KC, Schetter AJ, Morton DG, Kemphues KJ, Reinke V, Kim SK, Piano F, Vidal M (2002) Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr Biol 12:1952–1958PubMedCrossRefGoogle Scholar
  78. Wallace DC, Lott MT (2002) Mitochondrial genes in degenerative diseases, cancer and aging. In: Rimoin DL, Connor JL, Pyeritz RE, Korf BR (eds) Principles and practice of medical genetics. Churchill Livingstone, London, p 299–408Google Scholar
  79. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13PubMedCrossRefGoogle Scholar
  80. Weinberger M, Feng L, Paul A, Smith DL Jr, Hontz RD, Smith JS, Vujcic M, Singh KK, Huberman JA, Burhans WC (2007) DNA replication stress is a determinant of chronological lifespan in budding yeast. PLoS One 2:e748PubMedCrossRefGoogle Scholar
  81. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654PubMedGoogle Scholar
  82. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689PubMedCrossRefGoogle Scholar
  83. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Dusterhoft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito J, Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880PubMedCrossRefGoogle Scholar
  84. Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M (2004) Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 14:1107–1118PubMedCrossRefGoogle Scholar
  85. Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos AP, Ayte J, Hidalgo E (2010) Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO J 29:981–991PubMedCrossRefGoogle Scholar
  86. Zuin A, Gabrielli N, Calvo IA, Garcia-Santamarina S, Hoe KL, Kim DU, Park HO, Hayles J, Ayte J, Hidalgo E (2008) Mitochondrial dysfunction increases oxidative stress and decreases chronological life span in fission yeast. PLoS One 3:e2842PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of GeneticsCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Department of Molecular GeneticsLerner Research Institute, Cleveland Clinic Lerner College of MedicineClevelandUSA

Personalised recommendations