• Michael BreitenbachEmail author
  • Peter Laun
  • S. Michal Jazwinski
Part of the Subcellular Biochemistry book series (SCBI, volume 57)


Aging in yeast is now a well researched area with hundreds of new research and review papers appearing every year. The chapters following in this book written by some of the leading experts in the field will give an overview of the most relevant areas of yeast aging. The purpose of this chapter is to give the newcomer an introduction to the field including some basic technical questions.


Saccharomyces cerevisiae Replicative aging Rejuvenation Asymmetric segregation Stem cells 


  1. Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753PubMedCrossRefGoogle Scholar
  2. Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100PubMedCrossRefGoogle Scholar
  3. Anderson RM, Shanmuganayagam D, Weindruch R (2009) Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol 37:47–51PubMedCrossRefGoogle Scholar
  4. Barker MG, Walmsley RM (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15:1511–1518PubMedCrossRefGoogle Scholar
  5. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649PubMedCrossRefGoogle Scholar
  6. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352PubMedCrossRefGoogle Scholar
  7. Breitenbach M, Madeo F, Laun P, Heeren G, Jarolim S, Fröhlich K-U, Wissing S, Pichova A (2003) Yeast as a model for ageing and apoptosis research. Model systems in aging. Springer, Berlin/Heidelberg, pp 61–97Google Scholar
  8. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204PubMedCrossRefGoogle Scholar
  9. Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410PubMedCrossRefGoogle Scholar
  10. Dickinson JR, Schweizer M (eds) (2004) The metabolism and molecular physiology of Saccharomyces cerevisiae, 2nd edn. CRC Press, LondonGoogle Scholar
  11. Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171:37–42PubMedGoogle Scholar
  12. Eldakak A, Rancati G, Rubinstein B, Paul P, Conaway V, Li R (2010) Asymmetrically inherited multidrug resistance transporters are recessive determinants in cellular replicative ageing. Nat Cell Biol 12:799–805PubMedCrossRefGoogle Scholar
  13. Erjavec N, Cvijovic M, Klipp E, Nystrom T (2008) Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA 105:18764–18769PubMedCrossRefGoogle Scholar
  14. Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:10877–10881PubMedCrossRefGoogle Scholar
  15. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81PubMedCrossRefGoogle Scholar
  16. Fabrizio P, Longo VD (2008) Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta 1783:1280–1285PubMedCrossRefGoogle Scholar
  17. Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, Gully C, Gassner R, Lepperdinger G (2007) Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell 6:745–757PubMedCrossRefGoogle Scholar
  18. Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246PubMedCrossRefGoogle Scholar
  19. Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–585Google Scholar
  20. Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064PubMedCrossRefGoogle Scholar
  21. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621CrossRefGoogle Scholar
  22. Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B, Schuller C, Carmona-Gutierrez D, Breitenbach-Koller L, Muck C, Jansen-Durr P, Criollo A, Kroemer G, Madeo F, Breitenbach M (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging (Albany NY) 1:622–636Google Scholar
  23. Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507PubMedCrossRefGoogle Scholar
  24. Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14PubMedCrossRefGoogle Scholar
  25. Ingram DK, Young J, Mattison JA (2007) Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 145:1359–1364PubMedCrossRefGoogle Scholar
  26. Jazwinski SM (1993) The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91:35–51PubMedCrossRefGoogle Scholar
  27. Jazwinski SM (1998) Genetics of longevity. Exp Gerontol 33:773–783PubMedCrossRefGoogle Scholar
  28. Jazwinski SM, Egilmez NK, Chen JB (1989) Replication control and cellular life span. Exp Gerontol 24:423–436PubMedCrossRefGoogle Scholar
  29. Jazwinski SM, Kim S, Lai CY, Benguria A (1998) Epigenetic stratification: the role of individual change in the biological aging process. Exp Gerontol 33:571–580PubMedCrossRefGoogle Scholar
  30. Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137PubMedGoogle Scholar
  31. Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066PubMedCrossRefGoogle Scholar
  32. Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1:e69PubMedCrossRefGoogle Scholar
  33. Kastman EK, Willette AA, Coe CL, Bendlin BB, Kosmatka KJ, McLaren DG, Xu G, Canu E, Field AS, Alexander AL, Voytko ML, Beasley TM, Colman RJ, Weindruch RH, Johnson SC (2010) A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 30:7940–7947PubMedCrossRefGoogle Scholar
  34. Kennedy BK, Austriaco NR, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127:1985–1993PubMedCrossRefGoogle Scholar
  35. Klinger H, Rinnerthaler M, Lam YT, Laun P, Heeren G, Klocker A, Simon-Nobbe B, Dickinson JR, Dawes IW, Breitenbach M (2010) Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45:533–542PubMedCrossRefGoogle Scholar
  36. Lai CY, Jaruga E, Borghouts C, Jazwinski SM (2002) A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162:73–87PubMedGoogle Scholar
  37. Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Frohlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173PubMedCrossRefGoogle Scholar
  38. Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Yeast as a model for chronological and reproductive aging – a comparison. Exp Gerontol 41:1208–1212PubMedCrossRefGoogle Scholar
  39. Lin SJ, Guarente L (2006) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 2:e33; author reply e34PubMedCrossRefGoogle Scholar
  40. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348PubMedCrossRefGoogle Scholar
  41. Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34PubMedCrossRefGoogle Scholar
  42. McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2011 Jan) Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46(1):23–29PubMedCrossRefGoogle Scholar
  43. McMurray MA, Gottschling DE (2004) Aging and genetic instability in yeast. Curr Opin Microbiol 7:673–679PubMedCrossRefGoogle Scholar
  44. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752PubMedCrossRefGoogle Scholar
  45. Müller I, Zimmermann M, Becker D, Flömer M (1980) Calendar life span versus budding lifespan of Saccharomyces cerevisiae. Mech Ageing Dev 12:47–52PubMedCrossRefGoogle Scholar
  46. Nestelbacher R, Laun P, Vondrakova D, Pichova A, Schuller C, Breitenbach M (2000) The influence of oxygen toxicity on yeast mother cell-specific aging. Exp Gerontol 35:63–70PubMedCrossRefGoogle Scholar
  47. Nystrom T (2007) A bacterial kind of aging. PLoS Genet 3:e224PubMedCrossRefGoogle Scholar
  48. Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086PubMedCrossRefGoogle Scholar
  49. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91:1033–1042PubMedCrossRefGoogle Scholar
  50. Stansfield I, Stark M (eds) (2007) Yeast gene analysis. Academic Press, LondonGoogle Scholar
  51. Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16:94–102PubMedCrossRefGoogle Scholar
  52. Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6:599–606PubMedCrossRefGoogle Scholar
  53. Wang J, Jiang JC, Jazwinski SM (2010) Gene regulatory changes in yeast during life extension by nutrient limitation. Exp Gerontol 45:621–631PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Breitenbach
    • 1
    Email author
  • Peter Laun
    • 1
  • S. Michal Jazwinski
    • 2
  1. 1.Division of Genetics, Department of Cell BiologyUniversity of SalzburgSalzburgAustria
  2. 2.Department of MedicineTulane University Health Sciences Center, Tulane Center for Aging, Tulane UniversityNew OrleansUSA

Personalised recommendations