Skip to main content

Biomechanical ECM Switches and Tumor Metastasis

  • Chapter
  • First Online:
Signaling Pathways and Molecular Mediators in Metastasis

Abstract

Data is rapidly emerging that physical or biomechanical changes in extracellular matrix molecules (ECM) may allow differential control of cell signaling pathways and therefore, these structural alterations may actively regulate diverse cell types that comprise the tumor stroma. These mechanical changes in the structure of ECM molecules may trigger the exposure of cryptic ECM ­elements that help create a local microenvironment that facilitates initiation and progression of ­inflammation, tumor growth and metastasis. To this end, we will highlight the accumulating experimental evidence for the existence of biomechanical ECM switches and discuss how the selective triggering of these switches may be used by diverse cell types to promote malignant tumor progression. Finally, we will discuss ­scientific and clinical advancements that have lead to the recent translation of these exciting biological concepts into human clinical trials for cancer imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Contois L, Akalu A, Brooks PC (2009) Integrins as “functional hubs” in the regulation of pathological angiogenesis. Sem Cancer Biol 19:318–328

    Article  CAS  Google Scholar 

  2. Cretu A, Brooks PC (2007) Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 213:391–402

    Article  PubMed  CAS  Google Scholar 

  3. Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481

    Article  PubMed  CAS  Google Scholar 

  4. Järveläinen H, Sainio A, Koulu M et al (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61(2):198–223

    Article  PubMed  Google Scholar 

  5. Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264

    Article  PubMed  CAS  Google Scholar 

  6. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–5669

    Article  PubMed  CAS  Google Scholar 

  7. Brooks SA, Lomax-Browne HJ, Carter TM et al (2008) Molecular interactions in cancer cell metastasis. Acta Histochem 112:3–25

    Article  Google Scholar 

  8. Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 28(1–2):151–166

    Article  PubMed  CAS  Google Scholar 

  9. Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28(3):297–321

    Article  PubMed  CAS  Google Scholar 

  10. Chiodoni C, Colombo MP, Sangaletti S (2010) Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 29(2):295–307

    Article  PubMed  CAS  Google Scholar 

  11. Affara NI, Andreu P, Coussens LM (2009) Delineating protease functions during cancer development. In: Antalis TM, Bugge TH (eds) Methods in molecular biology, proteases and cancer, vol 539. Humana Press, Totowa

    Google Scholar 

  12. Brooks PC, Strömblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693

    Article  PubMed  CAS  Google Scholar 

  13. Stefanidakis M, Koivunen E (2006) Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 108(5):1441–1450

    Article  PubMed  CAS  Google Scholar 

  14. Pasco S, Ramont L, Maquart FX et al (2004) Control of melanoma progression by various matrikines from basement membrane macromolecules. Crit Rev Oncol Hematol 49:221–233

    Article  PubMed  Google Scholar 

  15. Levental KR, Yu H, Kass L et al (2009) Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell 139(5):891–906

    Article  PubMed  CAS  Google Scholar 

  16. Xu J, Rodriguez D, Petitclerc E et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154(5):1069–1079

    Article  PubMed  CAS  Google Scholar 

  17. Giannelli G, Falk-Marzillier J, Schiraldi O et al (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228

    Article  PubMed  CAS  Google Scholar 

  18. Sekiguchi K, Hakomori S, Funahashi M et al (1983) Binding of fibronectin and its proteolytic fragments to glycosaminoglycans. Exposure of cryptic glycosaminoglycan-binding domains upon limited proteolysis. J Biol Chem 258(23):14359–14365

    PubMed  CAS  Google Scholar 

  19. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metastasis Rev 28(1–2):113–127

    Article  PubMed  Google Scholar 

  20. Yu H, Mouw JK, Weaver VM (2010) Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol 21(1):47–56

    Article  PubMed  Google Scholar 

  21. Vogel V (2006) Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu Rev Biophys Biomol Struct 35:459–488

    Article  PubMed  CAS  Google Scholar 

  22. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  PubMed  CAS  Google Scholar 

  23. Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin cytoskeleton linkages. Cell 88(1):39–48

    Article  PubMed  CAS  Google Scholar 

  24. Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16(4):213–223

    Article  PubMed  CAS  Google Scholar 

  25. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33

    Article  PubMed  Google Scholar 

  26. Spaderna S, Schmalhofer O, Hlubek F et al (2006) A Transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131:830–840

    Article  PubMed  CAS  Google Scholar 

  27. Tran KT, Lamb P, Deng JS (2005) Matrikines and matricryptins: implications for cutaneous cancers and skin repair. J Dermatol Sci 40(1):11–20

    Article  PubMed  CAS  Google Scholar 

  28. Lin M, Jackson P, Tester AM et al (2008) Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol 173(1):144–153

    Article  PubMed  CAS  Google Scholar 

  29. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  30. Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656

    Article  PubMed  CAS  Google Scholar 

  31. Escorcio-Correia M, Hagemann T (2010) Macrophages in the tumor microenvironment. In: Bagley RG (ed) The tumor microenvironment, cancer drug discovery and development. Humana Press, New York

    Google Scholar 

  32. Wolf K, Friedl P (2009) Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis 26(4):289–298

    Article  PubMed  CAS  Google Scholar 

  33. Yahalom J, Eldor A, Brian S et al (1985) Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis. Radiother Oncol 3(3):211–225

    Article  PubMed  CAS  Google Scholar 

  34. Jain S, Harris J, Ware J (2010) Platelets. Linking Hemostasis and Cancer. Arterioscler Thromb Vasc Biol 30(12):2362–2367

    Article  PubMed  CAS  Google Scholar 

  35. Berg EL, Goldstein LA, Jutila MA et al (1989) Homing receptors and vascular addressins: cell adhesion molecules that direct lymphocyte traffic. Immunol Rev 108:5–18

    Article  PubMed  CAS  Google Scholar 

  36. Bargatze RF, Streeter PR, Butcher EC (1990) Expression of low levels of peripheral lymph node-associated vascular addressin in mucosal lymphoid tissues: possible relevance to the ­ dissemination of passaged AKR lymphomas. J Cell Biol 42(4):219–227

    CAS  Google Scholar 

  37. Wang S, Voisin MB, Larbi KY et al (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203(6):1519–1532

    Article  PubMed  CAS  Google Scholar 

  38. Voisin MB, Woodfin A, Nourshargh S (2009) Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arterioscler Thromb Vasc Biol 29(8):1193–1199

    Article  PubMed  CAS  Google Scholar 

  39. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  PubMed  CAS  Google Scholar 

  40. Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the “pre-metastatic niche”: within bone and beyond. Cancer Metastasis Rev 25(4):521–529

    Article  PubMed  Google Scholar 

  41. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  PubMed  CAS  Google Scholar 

  42. Grivennikov S, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  PubMed  CAS  Google Scholar 

  43. Mitsi M, Forsten-Williams K, Gopalakrishnan M et al (2008) A catalytic role of heparin within the extracellular matrix. J Biol Chem 283(50):34796–34807

    Article  PubMed  CAS  Google Scholar 

  44. Kilarski WW, Samolov B, Petersson L et al (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15(6):657–664

    Article  PubMed  CAS  Google Scholar 

  45. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  46. Cabodi S, Di Stefano P, Leal Mdel P et al (2010) Integrins and signal transduction. Adv Exp Med Biol 674:43–54

    Article  PubMed  CAS  Google Scholar 

  47. Arnaout MA, Goodman SL, Xiong JP (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19(5):495–507

    Article  PubMed  CAS  Google Scholar 

  48. Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28(1–2):35–49

    Article  PubMed  Google Scholar 

  49. Zaidel-Bar R, Itzkovitz S, Ma’ayan A et al (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867

    Article  PubMed  CAS  Google Scholar 

  50. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226(2):299–308

    Article  PubMed  CAS  Google Scholar 

  51. Goerges AL, Nugent MA (2004) pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. J Biol Chem 279(3):2307–2315

    Article  PubMed  CAS  Google Scholar 

  52. Vakonakis I, Staunton D, Rooney LM et al (2007) Interdomain association in fibronectin: insight into cryptic sites and fibrillogenesis. EMBO J 26(10):2575–2583

    Article  PubMed  CAS  Google Scholar 

  53. Vogel V, Thomas WE, Craig DW et al (2001) Structural insights into the mechanical regulation of molecular recognition sites. Trends Biotechnol 19(10):416–423

    Article  PubMed  CAS  Google Scholar 

  54. Krammer A, Craig D, Thomas WE et al (2002) A structural model for force regulated integrin binding to fibronectin’s RGD-synergy site. Matrix Biol 21(2):139–147

    Article  PubMed  CAS  Google Scholar 

  55. Danen EHJ, van Rheenen J, Franken W et al (2005) Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol 169(3):515–526

    Article  PubMed  CAS  Google Scholar 

  56. Langenbach KJ, Sottile J (1999) Identification of protein-disulfide isomerase activity in fibronectin. J Biol Chem 274(11):7032–7038

    Article  PubMed  CAS  Google Scholar 

  57. Boudjennah L, Dalet-Fumeron V, Pagano M (1998) Expression of collagenase/gelatinase activity from basement-membrane fibronectin–isolation after limited proteolysis of a bovine lens capsule and molecular definition of this thiol-dependent zinc metalloproteinase. Eur J Biochem 255(1):246–254

    Article  PubMed  CAS  Google Scholar 

  58. Montgomery AM, Reisfeld RA, Cheresh DA (1994) Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 91(19):8856–8860

    Article  PubMed  CAS  Google Scholar 

  59. Petitclerc E, Strömblad S, von Schalscha TL et al (1999) Integrin α V β 3 Promotes M21 Melanoma Growth in Human Skin by Regulating Tumor Cell Survival Integrin alpha(v)beta3 Promotes M21 Melanoma Growth in Human Skin by Regulating. Cancer Res 59(11):2724–2730

    PubMed  CAS  Google Scholar 

  60. Seiffert D, Smith JW (1997) The cell adhesion domain in plasma vitronectin is cryptic. J Biol Chem 272(21):13705–13710

    Article  PubMed  CAS  Google Scholar 

  61. Gladson CL, Cheresh DA (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88(6):1924–1932

    Article  PubMed  CAS  Google Scholar 

  62. Denda S, Ulrich M, Crossin KL et al (1998) Utilization of soluble integrin-alkaline phosphatase chimera to characterize integrin alpha8beta1 receptor interactions with tenascin: murine alpha 8 beta 1 binds to the RGD site in Tenascin-C fragments, but not to native Tenascin-C. Biochemistry 37(16):5464–5474

    Article  PubMed  CAS  Google Scholar 

  63. Iyer AKV, Tran KT, Borysenko CW et al (2006) Tenascin cytotactin epidermal growth factor-like repeat binds epidermal growth factor receptor with low affinity. J Cell Physiol 211(3):748–758

    Article  Google Scholar 

  64. Panayotou G, End P, Aumailley M et al (1989) Domains of laminin with growth-factor activity. Cell 56(1):93–101

    Article  PubMed  CAS  Google Scholar 

  65. Bloemendal HJ, de Boer HC, Koop EA et al (2004) Activated vitronectin as a target for anticancer therapy with human antibodies. Cancer Immunol Immunother 53(9):799–808

    Article  PubMed  CAS  Google Scholar 

  66. Staton CA, Brown NJ, Lewis CE (2003) The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opin Biol Ther 3(7):1105–1120

    Article  PubMed  CAS  Google Scholar 

  67. Fouchier F, Penel C, Pierre Montero M et al (2007) Integrin alphavbeta6 mediates HT29-D4 cell adhesion to MMP-processed fibrinogen in the presence of Mn2+. Eur J Cell Biol 86(3):143–160

    Article  PubMed  CAS  Google Scholar 

  68. Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419

    Article  PubMed  CAS  Google Scholar 

  69. Lee BH, Ruoslahti E (2005) alpha5beta1 integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin-dependent protein kinase IV. J Cell Biochem 95(6):1214–1223

    Article  PubMed  CAS  Google Scholar 

  70. Miura S, Kamiya S, Saito Y et al (2007) Antiadhesive sites present in the fibronectin type III-like repeats of human plasma fibronectin. Biol Pharm Bull 30(5):891–897

    Article  PubMed  CAS  Google Scholar 

  71. Hallmann R, Horn N, Selg M et al (2005) Expression and function of laminins in the ­embryonic and mature vasculature. Physiol Rev 85:979–1000

    Article  PubMed  CAS  Google Scholar 

  72. Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 12:e3

    Article  PubMed  Google Scholar 

  73. Iwamoto Y, Robey FA, Graf J et al (1987) YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238(4830):1132–1134

    Article  PubMed  CAS  Google Scholar 

  74. Yamamura K, Kibbey MC, Jun SH et al (1993) Effect of matrigel and laminin peptide YIGSR on tumor growth and metastasis. Semin Cancer Biol 4(4):259–265

    PubMed  CAS  Google Scholar 

  75. Akalu A, Roth JM, Caunt M et al (2007) Inhibition of angiogenesis and tumor metastasis by targeting a matrix immobilized cryptic extracellular matrix epitope in laminin. Cancer Res 67(9):4353–4363

    Article  PubMed  CAS  Google Scholar 

  76. Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501

    Article  PubMed  CAS  Google Scholar 

  77. Bhattacharjee A, Bansal M (2005) Collagen structure: the madras triple helix and the current scenario. IUBMB Life 57(3):161–172

    Article  PubMed  CAS  Google Scholar 

  78. Petitclerc E, Boutaud A, Prestayko A et al (2000) New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275(11):8051–8061

    Article  PubMed  CAS  Google Scholar 

  79. Roth JM, Akalu A, Zelmanovich A et al (2005) Recombinant alpha2(IV)NC1 domain inhibits tumor cell-extracellular matrix interactions, induces cellular senescence, and inhibits tumor growth in vivo. Am J Pathol 166(3):901–911

    Article  PubMed  CAS  Google Scholar 

  80. Xu J, Rodriguez D, Kim JJ et al (2000) Generation of monoclonal antibodies to cryptic ­collagen sites by using subtractive immunization. Hybridoma 19(5):375–385

    Article  PubMed  CAS  Google Scholar 

  81. Hangai M, Kitaya N, Xu J et al (2002) Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol 161(4):1429–1437

    Article  PubMed  CAS  Google Scholar 

  82. Odaka C, Tanioka M, Itoh T (2005) Matrix metalloproteinase-9 in macrophages induces ­thymic neovascularization following thymocyte apoptosis. J Immunol 174(2):846–853

    PubMed  CAS  Google Scholar 

  83. Roth JM, Caunt M, Cretu A et al (2006) Inhibition of experimental metastasis by targeting the HUIV26 cryptic epitope in collagen. Am J Pathol 168(5):1576–1586

    Article  PubMed  CAS  Google Scholar 

  84. Jo N, Ju M, Nishijima K et al (2006) Inhibitory effect of an antibody to cryptic collagen type IV epitopes on choroidal neovascularization. Mol Vis 12:1243–1249

    PubMed  CAS  Google Scholar 

  85. Cretu A, Roth JM, Caunt M et al (2007) Disruption of endothelial cell interactions with the novel HU177 cryptic collagen epitope inhibits angiogenesis. Clin Cancer Res 13(10):3068–3078

    Article  PubMed  CAS  Google Scholar 

  86. Freimark B, Clark D, Pernasetti F et al (2007) Targeting of humanized antibody D93 to sites of angiogenesis and tumor growth by binding to multiple epitopes on denatured collagens. Mol Immunol 44:3741–3750

    Article  PubMed  CAS  Google Scholar 

  87. Brooks PC, Roth JM, Lymberis SC et al (2002) Ionizing radiation modulates the exposure of the HUIV26 cryptic epitope within collagen type IV during angiogenesis. Int J Radiat Oncol Biol Phys 54(4):1194–1201

    Article  PubMed  CAS  Google Scholar 

  88. Pernasetti F, Nickel J, Clark D et al (2006) Novel anti-denatured collagen humanized antibody D93 inhibits angiogenesis and tumor growth: An extracellular matrix-based therapeutic approach. Int J Oncol 29(6):1371–1379

    PubMed  CAS  Google Scholar 

  89. Ebbinghaus C, Sheuermann J, Neri D et al (2004) Diagnostic and therapeutic applications of recombinant antibodies: targeting the extra-domain B of fibronectin, a marker of tumor angiogenesis. Curr Pharm Des 10(13):1537–1549

    Article  PubMed  CAS  Google Scholar 

  90. Ventura E, Sassi F, Parodi A et al (2010) Alternative splicing of the angiogenesis associated extra-domain B of fibronectin regulates the accessibility of the B-C loop of the type III repeat 8. PLoS One 5(2):e9145

    Article  PubMed  Google Scholar 

  91. Santimaria M, Moscatelli G, Viale GL et al (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9(2):571–579

    PubMed  CAS  Google Scholar 

  92. Robert F, Gordon MS, Rosen LS et al (2010) Final results from a phase 1 study of TRC093 (humanized anti-cleaved collagen antibody) in patients with solid cancer. ASCO annual ­meeting abst # 3038

    Google Scholar 

Download references

Acknowledgements

This work was supported in part from the National Institute of Health Grant CA91645 to PCB, The Maine Cancer Foundation (CPHV and PCB) and the National Institute of Health Center for Research Resources P20-RR-15555 (CPHV and PCB) and NIH Grant HL083151 (CPHV). Jacquelyn Ames is supported by the Integrative Graduate Education and Research Traineeship (NSF-IGERT DGE0221625) from UMaine. We would like to apologize to those investigators whose important work was not cited do to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ames, J.J., Vary, C.P.H., Brooks, P.C. (2011). Biomechanical ECM Switches and Tumor Metastasis. In: Fatatis, A. (eds) Signaling Pathways and Molecular Mediators in Metastasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2558-4_3

Download citation

Publish with us

Policies and ethics