Skip to main content

Surface-Enhanced Raman Spectroscopy of Organic Molecules Adsorbed on Metallic Nanoparticles

  • Chapter
  • First Online:
Nano-Biotechnology for Biomedical and Diagnostic Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

The improvements in Raman instrumentation have led to the development of ­portable, simple to operate, Raman instruments that can be used for on-site analysis of substances relevant for homeland security purposes such as chemical and biological warfare and explosives materials.

Raman spectroscopy, however, suffers from limited sensitivity which can be overcome by Surface-Enhanced Raman Spectroscopy (SERS). SERS can enhance the Raman signal of a target molecule by 6–10 orders of magnitude. The increased sensitivity, together with Raman’s molecular recognition capabilities and the availability of portable Raman instruments make SERS a powerful analytical tool for on site detection.

In this work we studied the effect of target molecules and SERS-active substrate properties on the obtained SERS, using a field portable Raman spectrometer. Also reported herein is the SERS detection of the chemical warfare agent sulfur mustard (HD, 2,2 dichloroethyl sulfide). This study may serve as a basis for the development of SERS platform for homeland security purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aroca, R. F., Alvarez-Puebla, R. A., Pieczonka, N., Sanchez-Cortez, S., & Garcia-Ramos, J. V. (2005). Surface-enhanced Raman scattering on colloidal nanostructured. Advanced in Colloid and Interface Science, 116, 45–61.

    Article  CAS  Google Scholar 

  • Brolo, A. G., Irish, D. E., & Smith, B. D. (1997). Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of Molecular Structure, 405, 29–44.

    Article  CAS  Google Scholar 

  • Brown, K. R., Walter, D. G., & Natan, M. J. (2000). Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials, 12, 306–313.

    Article  CAS  Google Scholar 

  • Brus, L. (2008). Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman ­spectroscopy. Accounts of Chemical Research, 41, 1742–1749.

    Article  PubMed  CAS  Google Scholar 

  • Dieringer, J. A., McFarland, A. D., Shah, N. C., Stuart, D. A., Whitney, A. V., Yonzon, C. R., Young, M. A., Zhang, X., & Duyne, R. P. V. (2006). Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discussions, 132, 9–26.

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra, R. J., Ariese, F., Gooijer, C., & Brinkman, U. A. T. H. (2005). Raman spectroscopy as a detection method for liquid-separation techniques. Trends in Analytical Chemistry, 24, 304–323.

    Article  CAS  Google Scholar 

  • Fan, M., & Brolo, A. G. (2008). Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational ­spectroscopy: Optimization and electrochemical stability. ChemPhysChem, 9, 1899–1907.

    Article  PubMed  CAS  Google Scholar 

  • Farquharson, S., Gift, A., Maksymiuk, P., & Inscore, F. (2005). Surface-enhanced Raman spectra of VX and its hydrolysis products. Applied Spectroscopy, 59, 654–659.

    Article  PubMed  CAS  Google Scholar 

  • Fleger, Y., Mastai, Y., Rosenbluh, M., & Dressler, D. H. (2009). Surface enhanced Raman spectroscopy of aromatic compounds on silver nanoclusters. Surface Science, 603, 788–793.

    Article  CAS  Google Scholar 

  • Haynes, C. L., Yonzon, C. R., Zhang, X., & Duyne, R. P. V. (2005). Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. Journal of Raman Spectroscopy, 36, 471–484.

    Article  CAS  Google Scholar 

  • Inscore, F., & Farquharson, S. (2005) Detecting hydrolysis products of blister agents in water by surface-enhanced Raman spectroscopy. Proceedings of the SPIE, 5993, 19–22.

    Google Scholar 

  • Inscore, F., Gift, A., Maksymiuk, P., & Farquharson, S. (2004). Characterization of chemical warfare G-agent hydrolysis products by surface-enhanced Raman spectroscopy. SPIE, 5585, 46–52.

    Article  CAS  Google Scholar 

  • Kennedy, B. J., Spaeth, S., Dickey, M., & Carron, K. T. (1999). Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. The Journal of Physical Chemistry. B, 103, 3640–3646.

    Article  CAS  Google Scholar 

  • Kvítek, L., & Prucek, R. (2005). The preparation and application of silver nanoparticles. Journal of Materials Science, 22, 2461–2473.

    Google Scholar 

  • Kwon, Y. J., Son, D. H., Ahn, S. J., Kim, M. S., & Kim, K. (1994). Vibrational spectroscopic investigation of benzoic acid adsorbed on silver. Journal of Physical Chemistry, 98, 8481–8487.

    Article  CAS  Google Scholar 

  • Lee, P. C., & Meisel, D. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gols sols. Journal of Physical Chemistry, 86, 3391–3395.

    Article  CAS  Google Scholar 

  • Leopold, N., & Lendl, B. (2003). A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloid at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. The Journal of Physical Chemistry. B, 107, 5723–5727.

    Article  CAS  Google Scholar 

  • Michota, A., & Bukowska, J. (2003). Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. Journal of Raman Spectroscopy, 34, 21–25.

    Article  CAS  Google Scholar 

  • Moore, D. S., & Scharff, R. J. (2009). Portable Raman explosives detection. Analytical and Bioanalytical Chemistry, 393, 1571–1578.

    Article  PubMed  CAS  Google Scholar 

  • Moskovits, M. (1985). Surface-enhanced spectroscopy. Reviews of Modern Physics, 57, 783–826.

    Article  CAS  Google Scholar 

  • Otto, A. (2005). The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 36, 497–509.

    Article  CAS  Google Scholar 

  • Qin, L., Zou, S., Xue, C., Atkinson, A., Schatz, G. C., & Mirkin, C. A. (2006). Designing, fabricating and imaging Raman hot spots. Proceedings of the National Academy of Science of the United States of America, 103, 13300–13303.

    Article  CAS  Google Scholar 

  • Smith, W. E. (2008). Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chemical Society Reviews, 37, 955–964.

    Article  PubMed  CAS  Google Scholar 

  • Stacy, A. M., & Duyne, R. P. V. (1983). Surface enhanced Raman and resonance Raman spectroscopy in a non-aqueous electrochemical environment: Tris (2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitril. Chemical Physics Letters, 102, 365–370.

    Article  CAS  Google Scholar 

  • Szafranski, C. A., Tanner, W., Laibinis, P. E., & Garrell, R. L. (1998). Surface-enhanced Raman spectroscopy of ­aromatic thiols and disulfides on gold electrodes. Langmuir, 14, 3570–3579.

    Article  CAS  Google Scholar 

  • Yaffe, N. R., & Blanch, E. W. (2008). Effect and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vibrational Spectroscopy, 48, 196–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vered Heleg-Shabtai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Heleg-Shabtai, V., Zifman, A., Kendler, S. (2012). Surface-Enhanced Raman Spectroscopy of Organic Molecules Adsorbed on Metallic Nanoparticles. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_6

Download citation

Publish with us

Policies and ethics