Advertisement

Active Noise Control in a Semi-closed Interior

  • Thomas KletschkowskiEmail author
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 56)

Abstract

As a first example this chapter presents the application of the general design methodology for ANC-systems (proposed in Chap.  8) to a particular interior noise problem in an aircraft cabin. To show the practical use of the proposed (matrix) design approach, considering the mechatronic background of feed-forward ANC presented in part I as well as the ANC-system design tools discussed in Chap.  7, this chapter reports on five successive design steps that were performed to support the development of a robust active noise system (ANS) for a special working area (WA) of a certain military aircraft (MA). The chapter starts with a motivation and a description of the requirements. Afterwards, the output of all design steps, beginning with the feasibility study and ending with the robustness study, will be summarized. The project was intended to support the activities of Airbus Germany. It was carried out at the professorship for Mechatronics of Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg between 2002 and 2009. This support has been continued in 2010 and in 2011.

Keywords

Noise Reduction Sound Pressure Working Area Error Sensor Interior Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Benassi L, Elliott SJ (2003) Active vibration isolation using an inertial actuator with local displacement feedback control. J Sound Vib 278:705–724 CrossRefGoogle Scholar
  2. Böhme S, Sachau D, Breitbach H (2006) Optimization of actuator and sensor positions for an active noise reduction system. In: 13th annual symposium on smart structures and materials, San Diego, CA, USA. Proc of SPIE, vol 6171, pp 61710N-1–61710N-11 Google Scholar
  3. Böhme S, Sachau D, Kletschkowski T, Breitbach H (2007) Mock-up of a loadmaster area for acoustic ground tests. In: Proc of CEAS 2007, 1st CEAS European air and space conference. Berlin, Germany Google Scholar
  4. Breitbach H, Sachau D (2009) Active acoustic solutions for a high speed turboprop transport aircraft. In: Proc of ACTIVE 2009, Ottawa, Canada, August 20–22 Google Scholar
  5. Breitbach H, Storm U, Stothers I (2009) Development of active noise reduction systems for a high speed turboprop transport aircraft. In: Proc of AC—adaptronic congress, Berlin, Germany, May 19–20 Google Scholar
  6. DIN EN 61672-1 (2003) Elektroakustik—Schallpegelmesser. Teil 1: Anforderungen (IEC 61672-1:2002); Deutsche Fassung EN 61672-1:2003. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  7. DIN EN 60268-4 (2004) Elektroakustische Geräte. Teil 4: Mikrofone (IEC 602684:2004); Deutsche Fassung EN 60268-4:2004. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  8. DIN EN 60268-5 (2004) Elektroakustische Geräte. Teil 5: Lautsprecher (IEC 60268-5:2003); Deutsche Fassung EN 60268-5:2003. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  9. DIN EN 60268-16 (2004) Elektroakustische Geräte. Teil 16: Objektive Bewertung der Sprachverständlichkeit durch den Sprachübertragungsindex (IEC 60268-16:2003); Deutsche Fassung EN 60268-16:2003. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  10. Elliott SJ (2001) Signal processing for active noise control. Academic Press, London Google Scholar
  11. Gerner C (2005) Optimale aktive Geräuschreduzierung in Flugzeugkabinen für hohe tonale Lärmpegel. Dissertation, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Google Scholar
  12. Gerner C, Sachau D, Breitbach H (2004a) Active noise control in an aircraft cabin. In: Proc of IMAC-XXII, conference on structural dynamics 20040126-29, Dearborn, MI, USA, January 26–29 Google Scholar
  13. Gerner C, Sachau D, Breitbach H (2004b) Aircraft interior ANC with flat panel speakers. In: Industrial and commercial applications of smart structures technologies, Bellingham, WA, USA. Proc of SPIE, vol 5388, pp 266–275 Google Scholar
  14. Gerner C, Sachau D, Breitbacu H (2005) Optimization of actuator and sensor positions for active noise reduction (ANR). In: Proc of ICSV12, twelfth international congress on sound and vibration, Lisbon, Portugal, July 11–14 Google Scholar
  15. Holland JH (1975) Adaption in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. University of Michigan Press, Ann Arbor zbMATHGoogle Scholar
  16. Johansson S (2000) Active control of propeller—induced noise in aircraft. Algorithms & methods. Dissertation, Blekinge Institute of Technology, BTH Ronneby, Sweden, ISBN: 91-631-0172-6 Google Scholar
  17. Jones JD, Fuller CR (1986) An experimental investigation of the interior noise control effects of propeller synchrophasing. NASA Contractor Report 178185 Google Scholar
  18. Kletschkowski T, Sachau D, Böhme S, Breitbach H (2005) Optimized active noise control of semiclosed aircraft interiors. Int J Aeroacoust 6(1):61–71 CrossRefGoogle Scholar
  19. Klünder C (2004) Verbesserung eines adaptiven Systems zur aktiven Reduzierung von Propellerlärm. Studienarbeit, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Google Scholar
  20. Kochan K (2009) Robuste aktive Schallreduktion in Flugzeugen. Dissertation, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Google Scholar
  21. Kochan K, Sachau DK (2009) Robust parameter design of an adaptive multi-channel active noise controller. In: Proc of NAG/DAGA, int conf on acoustics, including the 35th German annual conference on acoustics (DAGA), Rotterdam, Mart 23–26 Google Scholar
  22. Kochan K, Sachau D, Kletschkowski T (2008) Active noise control in a semi-closed aircraft cabin. In: Proc of ISMA 2008, int conference on noise and vibration engineering, Sept 15–17. Katholieke Universiteit Leuven, Belgium Google Scholar
  23. Kochan K, Weizel E, Sachau D (2009a) Evaluation of the stability and performance of an uncertain active noise control system. In: Proc of ACTIVE 2009, Ottawa, Canada, August 23–26 Google Scholar
  24. Kochan K, Sachau D, Breitbach H (2009b) Robust controller design of an active noise control system for a propeller aircraft. In: Proc of INTER-NOISE 2009, Ottawa, Canada, August 23–26 Google Scholar
  25. Kuo SM, Morgan DR (1996) Active noise control systems—algorithms and DSP implementations. Wiley, Canada Google Scholar
  26. Pareto V (1971) Manual of political economy. Kelley, New York Google Scholar
  27. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1994) Numerical recipes in FORTRAN. The art of scientific computing, 2nd edn. Cambridge University Press, New York Google Scholar
  28. Sachau D, Gerner C (2004) Hardware optimisation for tonal ANR. In: Proc of ACTIVE 04, Williamsburg, VA, USA, September 20–22 Google Scholar
  29. Santag S, Ziese T (2003) Validierung von FE-Berechnungen des LMWS-Testaufbaus durch experimentelle Untersuchungen. Project work, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Google Scholar
  30. Sommer J (2005) Projektierung eines experimentellen ANR-Systems zur Reduzierung von tonalem Propellerlärm. Diploma Thesis, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Google Scholar
  31. Sommer J, Sachau D, Gerner C (2005) Control algorithm for an experimental active noise reduction (ANR) system to reduce tonal propeller noise. In: Proc of ICSV12, twelfth international congress on sound and vibration, Lisbon, Portugal, July 11–14 Google Scholar
  32. Weizel E (2009) Robuste Auslegung eines ANC-Reglers mit Gewichtungsmatrix. Diploma Thesis. Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Google Scholar
  33. Wendt O (1995) Tourenplanung durch Einsatz naturanaloger Verfahren. Dt. Univ.-Vlg. Gabler, Wiesbaden Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, MechatronicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations